#!/usr/bin/env # The port for communication. Note that if you want to run multiple tasks on the same machine, # you need to specify different port numbers. export MASTER_PORT=6061 det_weight=0.1 cls_weight=0.0005 num_bins=64 log_dir=./polyformer_b_logs save_dir=./polyformer_b_checkpoints mkdir -p $log_dir $save_dir bpe_dir=../../utils/BPE user_dir=../../polyformer_module data_dir=../../datasets/finetune data=${data_dir}/refcoco+g_train_shuffled.tsv,${data_dir}/refcoco/refcoco_val.tsv selected_cols=0,5,6,2,4,3,7 restore_file=../../weights/polyformer_b_pretrain.pt task=refcoco arch=polyformer_b criterion=adjust_label_smoothed_cross_entropy label_smoothing=0.1 lr=3e-5 max_epoch=5 warmup_ratio=0.06 batch_size=16 update_freq=8 resnet_drop_path_rate=0.0 encoder_drop_path_rate=0.1 decoder_drop_path_rate=0.1 dropout=0.1 attention_dropout=0.0 max_src_length=80 max_tgt_length=420 patch_image_size=512 for max_epoch in 100; do echo "max_epoch "${max_epoch} for lr in 5e-5; do echo "lr "${lr} for patch_image_size in 512; do echo "patch_image_size "${patch_image_size} log_file=${log_dir}/${max_epoch}"_"${lr}"_"${patch_image_size}".log" save_path=${save_dir}/${max_epoch}"_"${lr}"_"${patch_image_size} mkdir -p $save_path CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 -m torch.distributed.launch --nproc_per_node=8 --master_port=${MASTER_PORT} ../../train.py \ $data \ --selected-cols=${selected_cols} \ --bpe-dir=${bpe_dir} \ --user-dir=${user_dir} \ --reset-optimizer --reset-dataloader --reset-meters \ --save-dir=${save_path} \ --task=${task} \ --arch=${arch} \ --criterion=${criterion} \ --label-smoothing=${label_smoothing} \ --batch-size=${batch_size} \ --update-freq=${update_freq} \ --encoder-normalize-before \ --restore-file=${restore_file} \ --decoder-normalize-before \ --share-decoder-input-output-embed \ --share-all-embeddings \ --layernorm-embedding \ --patch-layernorm-embedding \ --code-layernorm-embedding \ --resnet-drop-path-rate=${resnet_drop_path_rate} \ --encoder-drop-path-rate=${encoder_drop_path_rate} \ --decoder-drop-path-rate=${decoder_drop_path_rate} \ --dropout=${dropout} \ --attention-dropout=${attention_dropout} \ --weight-decay=0.01 --optimizer=adam --adam-betas="(0.9,0.999)" --adam-eps=1e-08 --clip-norm=1.0 \ --lr-scheduler=polynomial_decay --lr=${lr} \ --max-epoch=${max_epoch} --warmup-ratio=${warmup_ratio} \ --log-format=simple --log-interval=10 \ --fixed-validation-seed=7 \ --no-epoch-checkpoints --keep-best-checkpoints=1 \ --save-interval=1 --validate-interval=1 \ --save-interval-updates=500 --validate-interval-updates=500 \ --eval-acc \ --eval-args='{"beam":5,"min_len":2,"max_len_a":0,"max_len_b":2}' \ --best-checkpoint-metric=score --maximize-best-checkpoint-metric \ --max-src-length=${max_src_length} \ --max-tgt-length=${max_tgt_length} \ --find-unused-parameters \ --add-type-embedding \ --scale-attn \ --scale-fc \ --scale-heads \ --disable-entangle \ --num-bins=${num_bins} \ --patch-image-size=${patch_image_size} \ --fp16 \ --fp16-scale-window=512 \ --det_weight=${det_weight} \ --cls_weight=${cls_weight} \ --num-workers=0 > ${log_file} 2>&1 done done done