import gradio as gr with open('materials/introduction.html', 'r', encoding='utf-8') as file: html_description = file.read() with gr.Blocks() as landing_interface: gr.HTML(html_description) with gr.Accordion("How to run this model locally", open=False): gr.Markdown( """ ## Installation To use this model, you must install the GLiClass Python library: ``` !pip install gliclass ``` ## Usage Once you've downloaded the GLiClass library, you can import the GLiClassModel and ZeroShotClassificationPipeline classes. """ ) gr.Code( ''' from gliclass import GLiClassModel, ZeroShotClassificationPipeline from transformers import AutoTokenizer model = GLiClassModel.from_pretrained("knowledgator/gliclass-small-v1") tokenizer = AutoTokenizer.from_pretrained("knowledgator/gliclass-small-v1") pipeline = ZeroShotClassificationPipeline(model, tokenizer, classification_type='multi-label', device='cuda:0') text = "One day I will see the world!" labels = ["travel", "dreams", "sport", "science", "politics"] results = pipeline(text, labels, threshold=0.5)[0] #because we have one text for result in results: print(result["label"], "=>", result["score"]) ''', language="python", )