import gradio as gr from transformers import pipeline detection = pipeline('comment detection') def score_comment(comment): vectorized_comment = vectorizer([comment]) results = model.predict(vectorized_comment) text = '' for idx, col in enumerate(df.columns[2:]): text += '{}: {}\n'.format(col, results[0][idx]>0.5) return text demo = gr.Interface( fn=score_comment, inputs=gr.inputs.Textbox(lines=2, placeholder='Comment to score'), outputs='text', title='Hate Comment Detector', description='Enter comment to verify', theme='compact', layout='vertical', width=600, height=400, allow_flagging=True, bgcolor='#f2f2f2', ) demo.launch(share=False)