|
import gradio as gr |
|
import nltk |
|
nltk.download('omw-1.4') |
|
from qanom.nominalization_detector import NominalizationDetector |
|
|
|
detector = NominalizationDetector() |
|
|
|
title = "Nominalization Detection Demo" |
|
description = f"""This is a demo of QANom's nominalization detection algorithm, |
|
comprised of candidate nominalization extraction followed by a contextualized binary classification model.""" |
|
links = """<p style='text-align: center'> |
|
<a href='https://github.com/kleinay/QANom' target='_blank'>QANom repo</a> | |
|
<a href='https://huggingface.co/kleinay/nominalization-candidate-classifier' target='_blank'>Model Repo at Huggingface Hub</a> | |
|
<a href='https://www.aclweb.org/anthology/2020.coling-main.274/' target='_blank'>QANom Paper</a> |
|
</p>""" |
|
examples = [["The doctor was interested in Luke 's treatment .", True, 0.5], |
|
["The description of the horse 's jump provided a surprise to the owner and a show of the skill of the trainer .", True, 0.5], |
|
["The construction of the officer 's building finished right after the beginning of the destruction of the previous construction .", True, 0.75]] |
|
|
|
def call(sentence: str, return_all_candidates: bool, threshold: float): |
|
ret = detector([sentence], return_all_candidates, True, threshold)[0] |
|
if return_all_candidates: |
|
positives = [d["predicate_idx"] for d in ret if d['predicate_detector_prediction']] |
|
negatives = [d["predicate_idx"] for d in ret if not d['predicate_detector_prediction']] |
|
else: |
|
positives = [d["predicate_idx"] for d in ret] |
|
negatives = [] |
|
def color(idx): |
|
if idx in positives: return "lightgreen" |
|
if idx in negatives: return "pink" |
|
idx2verb = {d["predicate_idx"] : d["verb_form"] for d in ret} |
|
idx2prob = {d["predicate_idx"] : d["predicate_detector_probability"] for d in ret} |
|
def word_span(word, idx): |
|
tooltip = f'title=" probability={idx2prob[idx]:.2}
verb={idx2verb[idx]}"' if idx in idx2verb else '' |
|
return f'<span {tooltip} style="background-color: {color(idx)}">{word}</span>' |
|
html = '<span>' + ' '.join(word_span(word, idx) for idx, word in enumerate(sentence.split(" "))) + '</span>' |
|
return html, ret |
|
|
|
iface = gr.Interface(call, |
|
inputs=[gr.inputs.Textbox(label="Sentence", lines=3), |
|
gr.inputs.Checkbox(default=True, label="Return all candidates?"), |
|
gr.inputs.Slider(minimum=0., maximum=1., step=0.01, default=0.5, label="Threshold")], |
|
outputs=[gr.outputs.HTML(label="Detected Nominalizations"), |
|
gr.outputs.JSON(label="Raw Model Output")], |
|
title=title, |
|
description=description, |
|
article=links, |
|
examples=examples ) |
|
iface.launch() |