import pandas as pd import gradio as gr import gradio as gr; print(gr.__version__) # Replace with path to your ESG data (CSV or other supported format) data_path = "ESG_data.csv" company_ratings = [ {"Company Name": "Apple Inc.", "Rating": 4.5}, {"Company Name": "Amazon.com, Inc.", "Rating": 4.2}, {"Company Name": "Microsoft Corporation", "Rating": 4.7}, {"Company Name": "Alphabet Inc. (Google)", "Rating": 4.8}, {"Company Name": "Tesla, Inc.", "Rating": 3.9}, {"Company Name": "Meta Platforms Inc. (Facebook)", "Rating": 3.1}, ] # Load ESG data esg_data = pd.DataFrame(company_ratings) import gradio as gr import pandas as pd inputs = [gr.Dataframe(row_count = (2, "dynamic"), col_count=(4,"dynamic"), label="Input Data", interactive=1)] outputs = [gr.Dataframe(row_count = (2, "dynamic"), col_count=(1, "fixed"), label="Predictions", headers=["Failures"])] def infer(input_dataframe): return pd.DataFrame(input_dataframe) gr.Interface(fn = infer, inputs = inputs, outputs = outputs, examples = [[esg_data.head(2)]]).launch() # def get_esg_scores(ticker): # """ # Finds ESG scores for a given ticker symbol in the loaded data. # Args: # ticker (str): Ticker symbol of the company. # Returns: # pandas.DataFrame: Subset of ESG data for the ticker, # containing ESG scores if found, or an empty DataFrame # if not found. # """ # filtered_data = esg_data[esg_data["Ticker Symbol"] == ticker.upper()] # return filtered_data if not filtered_data.empty else pd.DataFrame() # def display_esg_scores(dataframe): # """ # Displays ESG scores in a table format if a DataFrame is provided, # otherwise displays a message indicating no data found. # Args: # dataframe (pandas.DataFrame): DataFrame containing ESG scores. # """ # if dataframe.empty: # return "No ESG data found for this ticker." # else: # # Select relevant ESG score columns (adjust based on your data) # esg_scores = dataframe[["Ticker Symbol", "Governance Score", "Social Score", "Environmental Score"]] # return gr.DataTable(dataframe=esg_scores.to_dict()) # iface = gr.Interface( # fn=get_esg_scores, # inputs=gr.inputs.Textbox(label="Ticker Symbol"), # outputs=esg_data, # title="ESG Score Lookup", # description="Enter a company ticker symbol to view its ESG scores (if available).", # ) # iface.launch()