#!/usr/bin/env python from __future__ import annotations import functools import os import pathlib import shlex import subprocess import sys import urllib.request if os.environ.get('SYSTEM') == 'spaces': subprocess.call(shlex.split('pip uninstall -y opencv-python')) subprocess.call(shlex.split('pip uninstall -y opencv-python-headless')) subprocess.call( shlex.split('pip install opencv-python-headless==4.5.5.64')) subprocess.call(shlex.split('pip install terminaltables==3.1.0')) subprocess.call(shlex.split('pip install mmpycocotools==12.0.3')) subprocess.call(shlex.split('pip install insightface==0.6.2')) subprocess.call(shlex.split('sed -i 23,26d __init__.py'), cwd='insightface/detection/scrfd/mmdet') import mim mim.install('mmcv-full==1.4', is_yes=True) import cv2 import gradio as gr import huggingface_hub import numpy as np import torch import torch.nn as nn sys.path.insert(0, 'insightface/detection/scrfd') from mmdet.apis import inference_detector, init_detector, show_result_pyplot TITLE = 'insightface Face Detection (SCRFD)' DESCRIPTION = 'This is an unofficial demo for https://github.com/deepinsight/insightface/tree/master/detection/scrfd.' HF_TOKEN = os.getenv('HF_TOKEN') def load_model(model_size: str, device) -> nn.Module: ckpt_path = huggingface_hub.hf_hub_download( 'hysts/insightface', f'models/scrfd_{model_size}/model.pth', use_auth_token=HF_TOKEN) scrfd_dir = 'insightface/detection/scrfd' config_path = f'{scrfd_dir}/configs/scrfd/scrfd_{model_size}.py' model = init_detector(config_path, ckpt_path, device.type) return model def update_test_pipeline(model: nn.Module, mode: int): cfg = model.cfg pipelines = cfg.data.test.pipeline for pipeline in pipelines: if pipeline.type == 'MultiScaleFlipAug': if mode == 0: # 640 scale pipeline.img_scale = (640, 640) if hasattr(pipeline, 'scale_factor'): del pipeline.scale_factor elif mode == 1: # for single scale in other pages pipeline.img_scale = (1100, 1650) if hasattr(pipeline, 'scale_factor'): del pipeline.scale_factor elif mode == 2: # original scale pipeline.img_scale = None pipeline.scale_factor = 1.0 transforms = pipeline.transforms for transform in transforms: if transform.type == 'Pad': if mode != 2: transform.size = pipeline.img_scale if hasattr(transform, 'size_divisor'): del transform.size_divisor else: transform.size = None transform.size_divisor = 32 def detect(image: np.ndarray, model_size: str, mode: int, face_score_threshold: float, detectors: dict[str, nn.Module]) -> np.ndarray: model = detectors[model_size] update_test_pipeline(model, mode) # RGB -> BGR image = image[:, :, ::-1] preds = inference_detector(model, image) boxes = preds[0] res = image.copy() for box in boxes: box, score = box[:4], box[4] if score < face_score_threshold: continue box = np.round(box).astype(int) line_width = max(2, int(3 * (box[2:] - box[:2]).max() / 256)) cv2.rectangle(res, tuple(box[:2]), tuple(box[2:]), (0, 255, 0), line_width) res = cv2.cvtColor(res, cv2.COLOR_BGR2RGB) return res device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') model_sizes = [ '500m', '1g', '2.5g', '10g', '34g', ] detectors = { model_size: load_model(model_size, device=device) for model_size in model_sizes } modes = [ '(640, 640)', '(1100, 1650)', 'original', ] func = functools.partial(detect, detectors=detectors) image_path = pathlib.Path('selfie.jpg') if not image_path.exists(): url = 'https://raw.githubusercontent.com/peiyunh/tiny/master/data/demo/selfie.jpg' urllib.request.urlretrieve(url, image_path) examples = [[image_path.as_posix(), '10g', modes[0], 0.3]] gr.Interface( fn=func, inputs=[ gr.Image(label='Input', type='numpy'), gr.Radio(label='Model', choices=model_sizes, type='value', value='10g'), gr.Radio(label='Mode', choices=modes, type='index', value=modes[0]), gr.Slider(label='Face Score Threshold', minimum=0, maximum=1, step=0.05, default=0.3), ], outputs=gr.Image(label='Output', type='numpy'), examples=examples, title=TITLE, description=DESCRIPTION, ).queue().launch(show_api=False)