# Ultralytics YOLO 🚀, GPL-3.0 license import contextlib from copy import deepcopy import thop import torch import torch.nn as nn from ultralytics.nn.modules import (C1, C2, C3, C3TR, SPP, SPPF, Bottleneck, BottleneckCSP, C2f, C3Ghost, C3x, Classify, Concat, Conv, ConvTranspose, Detect, DWConv, DWConvTranspose2d, Ensemble, Focus, GhostBottleneck, GhostConv, Segment) from ultralytics.yolo.utils import DEFAULT_CONFIG_DICT, DEFAULT_CONFIG_KEYS, LOGGER, colorstr, yaml_load from ultralytics.yolo.utils.checks import check_yaml from ultralytics.yolo.utils.torch_utils import (fuse_conv_and_bn, initialize_weights, intersect_dicts, make_divisible, model_info, scale_img, time_sync) class BaseModel(nn.Module): ''' The BaseModel class is a base class for all the models in the Ultralytics YOLO family. ''' def forward(self, x, profile=False, visualize=False): """ > `forward` is a wrapper for `_forward_once` that runs the model on a single scale Args: x: the input image profile: whether to profile the model. Defaults to False visualize: if True, will return the intermediate feature maps. Defaults to False Returns: The output of the network. """ return self._forward_once(x, profile, visualize) def _forward_once(self, x, profile=False, visualize=False): """ > Forward pass of the network Args: x: input to the model profile: if True, the time taken for each layer will be printed. Defaults to False visualize: If True, it will save the feature maps of the model. Defaults to False Returns: The last layer of the model. """ y, dt = [], [] # outputs for m in self.model: if m.f != -1: # if not from previous layer x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers if profile: self._profile_one_layer(m, x, dt) x = m(x) # run y.append(x if m.i in self.save else None) # save output if visualize: pass # TODO: feature_visualization(x, m.type, m.i, save_dir=visualize) return x def _profile_one_layer(self, m, x, dt): """ It takes a model, an input, and a list of times, and it profiles the model on the input, appending the time to the list Args: m: the model x: the input image dt: list of time taken for each layer """ c = m == self.model[-1] # is final layer, copy input as inplace fix o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPs t = time_sync() for _ in range(10): m(x.copy() if c else x) dt.append((time_sync() - t) * 100) if m == self.model[0]: LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s} module") LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f} {m.type}') if c: LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s} Total") def fuse(self): """ > It takes a model and fuses the Conv2d() and BatchNorm2d() layers into a single layer Returns: The model is being returned. """ LOGGER.info('Fusing layers... ') for m in self.model.modules(): if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'): m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv delattr(m, 'bn') # remove batchnorm m.forward = m.forward_fuse # update forward self.info() return self def info(self, verbose=False, imgsz=640): """ Prints model information Args: verbose: if True, prints out the model information. Defaults to False imgsz: the size of the image that the model will be trained on. Defaults to 640 """ model_info(self, verbose, imgsz) def _apply(self, fn): """ `_apply()` is a function that applies a function to all the tensors in the model that are not parameters or registered buffers Args: fn: the function to apply to the model Returns: A model that is a Detect() object. """ self = super()._apply(fn) m = self.model[-1] # Detect() if isinstance(m, (Detect, Segment)): m.stride = fn(m.stride) m.anchors = fn(m.anchors) m.strides = fn(m.strides) return self def load(self, weights): """ > This function loads the weights of the model from a file Args: weights: The weights to load into the model. """ # Force all tasks to implement this function raise NotImplementedError("This function needs to be implemented by derived classes!") class DetectionModel(BaseModel): # YOLOv5 detection model def __init__(self, cfg='yolov8n.yaml', ch=3, nc=None, verbose=True): # model, input channels, number of classes super().__init__() self.yaml = cfg if isinstance(cfg, dict) else yaml_load(check_yaml(cfg), append_filename=True) # cfg dict # Define model ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels if nc and nc != self.yaml['nc']: LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}") self.yaml['nc'] = nc # override yaml value self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch], verbose=verbose) # model, savelist self.names = {i: f'{i}' for i in range(self.yaml['nc'])} # default names dict self.inplace = self.yaml.get('inplace', True) # Build strides m = self.model[-1] # Detect() if isinstance(m, (Detect, Segment)): s = 256 # 2x min stride m.inplace = self.inplace forward = lambda x: self.forward(x)[0] if isinstance(m, Segment) else self.forward(x) m.stride = torch.tensor([s / x.shape[-2] for x in forward(torch.zeros(1, ch, s, s))]) # forward self.stride = m.stride m.bias_init() # only run once # Init weights, biases initialize_weights(self) if verbose: self.info() LOGGER.info('') def forward(self, x, augment=False, profile=False, visualize=False): if augment: return self._forward_augment(x) # augmented inference, None return self._forward_once(x, profile, visualize) # single-scale inference, train def _forward_augment(self, x): img_size = x.shape[-2:] # height, width s = [1, 0.83, 0.67] # scales f = [None, 3, None] # flips (2-ud, 3-lr) y = [] # outputs for si, fi in zip(s, f): xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max())) yi = self._forward_once(xi)[0] # forward # cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save yi = self._descale_pred(yi, fi, si, img_size) y.append(yi) y = self._clip_augmented(y) # clip augmented tails return torch.cat(y, -1), None # augmented inference, train @staticmethod def _descale_pred(p, flips, scale, img_size, dim=1): # de-scale predictions following augmented inference (inverse operation) p[:, :4] /= scale # de-scale x, y, wh, cls = p.split((1, 1, 2, p.shape[dim] - 4), dim) if flips == 2: y = img_size[0] - y # de-flip ud elif flips == 3: x = img_size[1] - x # de-flip lr return torch.cat((x, y, wh, cls), dim) def _clip_augmented(self, y): # Clip YOLOv5 augmented inference tails nl = self.model[-1].nl # number of detection layers (P3-P5) g = sum(4 ** x for x in range(nl)) # grid points e = 1 # exclude layer count i = (y[0].shape[-1] // g) * sum(4 ** x for x in range(e)) # indices y[0] = y[0][..., :-i] # large i = (y[-1].shape[-1] // g) * sum(4 ** (nl - 1 - x) for x in range(e)) # indices y[-1] = y[-1][..., i:] # small return y def load(self, weights, verbose=True): csd = weights.float().state_dict() # checkpoint state_dict as FP32 csd = intersect_dicts(csd, self.state_dict()) # intersect self.load_state_dict(csd, strict=False) # load if verbose: LOGGER.info(f'Transferred {len(csd)}/{len(self.model.state_dict())} items from pretrained weights') class SegmentationModel(DetectionModel): # YOLOv5 segmentation model def __init__(self, cfg='yolov8n-seg.yaml', ch=3, nc=None, verbose=True): super().__init__(cfg, ch, nc, verbose) class ClassificationModel(BaseModel): # YOLOv5 classification model def __init__(self, cfg=None, model=None, ch=3, nc=1000, cutoff=10, verbose=True): # yaml, model, number of classes, cutoff index super().__init__() self._from_detection_model(model, nc, cutoff) if model is not None else self._from_yaml(cfg, ch, nc, verbose) def _from_detection_model(self, model, nc=1000, cutoff=10): # Create a YOLOv5 classification model from a YOLOv5 detection model from ultralytics.nn.autobackend import AutoBackend if isinstance(model, AutoBackend): model = model.model # unwrap DetectMultiBackend model.model = model.model[:cutoff] # backbone m = model.model[-1] # last layer ch = m.conv.in_channels if hasattr(m, 'conv') else m.cv1.conv.in_channels # ch into module c = Classify(ch, nc) # Classify() c.i, c.f, c.type = m.i, m.f, 'models.common.Classify' # index, from, type model.model[-1] = c # replace self.model = model.model self.stride = model.stride self.save = [] self.nc = nc def _from_yaml(self, cfg, ch, nc, verbose): self.yaml = cfg if isinstance(cfg, dict) else yaml_load(check_yaml(cfg), append_filename=True) # cfg dict # Define model ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels if nc and nc != self.yaml['nc']: LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}") self.yaml['nc'] = nc # override yaml value self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch], verbose=verbose) # model, savelist self.names = {i: f'{i}' for i in range(self.yaml['nc'])} # default names dict self.info() def load(self, weights): model = weights["model"] if isinstance(weights, dict) else weights # torchvision models are not dicts csd = model.float().state_dict() csd = intersect_dicts(csd, self.state_dict()) # intersect self.load_state_dict(csd, strict=False) # load @staticmethod def reshape_outputs(model, nc): # Update a TorchVision classification model to class count 'n' if required name, m = list((model.model if hasattr(model, 'model') else model).named_children())[-1] # last module if isinstance(m, Classify): # YOLO Classify() head if m.linear.out_features != nc: m.linear = nn.Linear(m.linear.in_features, nc) elif isinstance(m, nn.Linear): # ResNet, EfficientNet if m.out_features != nc: setattr(model, name, nn.Linear(m.in_features, nc)) elif isinstance(m, nn.Sequential): types = [type(x) for x in m] if nn.Linear in types: i = types.index(nn.Linear) # nn.Linear index if m[i].out_features != nc: m[i] = nn.Linear(m[i].in_features, nc) elif nn.Conv2d in types: i = types.index(nn.Conv2d) # nn.Conv2d index if m[i].out_channels != nc: m[i] = nn.Conv2d(m[i].in_channels, nc, m[i].kernel_size, m[i].stride, bias=m[i].bias is not None) # Functions ------------------------------------------------------------------------------------------------------------ def attempt_load_weights(weights, device=None, inplace=True, fuse=False): # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a from ultralytics.yolo.utils.downloads import attempt_download model = Ensemble() for w in weights if isinstance(weights, list) else [weights]: ckpt = torch.load(attempt_download(w), map_location='cpu') # load args = {**DEFAULT_CONFIG_DICT, **ckpt['train_args']} # combine model and default args, preferring model args ckpt = (ckpt.get('ema') or ckpt['model']).to(device).float() # FP32 model # Model compatibility updates ckpt.args = {k: v for k, v in args.items() if k in DEFAULT_CONFIG_KEYS} # attach args to model ckpt.pt_path = weights # attach *.pt file path to model if not hasattr(ckpt, 'stride'): ckpt.stride = torch.tensor([32.]) # Append model.append(ckpt.fuse().eval() if fuse and hasattr(ckpt, 'fuse') else ckpt.eval()) # model in eval mode # Module compatibility updates for m in model.modules(): t = type(m) if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Segment): m.inplace = inplace # torch 1.7.0 compatibility elif t is nn.Upsample and not hasattr(m, 'recompute_scale_factor'): m.recompute_scale_factor = None # torch 1.11.0 compatibility # Return model if len(model) == 1: return model[-1] # Return ensemble print(f'Ensemble created with {weights}\n') for k in 'names', 'nc', 'yaml': setattr(model, k, getattr(model[0], k)) model.stride = model[torch.argmax(torch.tensor([m.stride.max() for m in model])).int()].stride # max stride assert all(model[0].nc == m.nc for m in model), f'Models have different class counts: {[m.nc for m in model]}' return model def attempt_load_one_weight(weight, device=None, inplace=True, fuse=False): # Loads a single model weights from ultralytics.yolo.utils.downloads import attempt_download ckpt = torch.load(attempt_download(weight), map_location='cpu') # load args = {**DEFAULT_CONFIG_DICT, **ckpt['train_args']} # combine model and default args, preferring model args model = (ckpt.get('ema') or ckpt['model']).to(device).float() # FP32 model # Model compatibility updates model.args = {k: v for k, v in args.items() if k in DEFAULT_CONFIG_KEYS} # attach args to model model.pt_path = weight # attach *.pt file path to model if not hasattr(model, 'stride'): model.stride = torch.tensor([32.]) model = model.fuse().eval() if fuse and hasattr(model, 'fuse') else model.eval() # model in eval mode # Module compatibility updates for m in model.modules(): t = type(m) if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Segment): m.inplace = inplace # torch 1.7.0 compatibility elif t is nn.Upsample and not hasattr(m, 'recompute_scale_factor'): m.recompute_scale_factor = None # torch 1.11.0 compatibility # Return model and ckpt return model, ckpt def parse_model(d, ch, verbose=True): # model_dict, input_channels(3) # Parse a YOLO model.yaml dictionary if verbose: LOGGER.info(f"\n{'':>3}{'from':>20}{'n':>3}{'params':>10} {'module':<45}{'arguments':<30}") nc, gd, gw, act = d['nc'], d['depth_multiple'], d['width_multiple'], d.get('activation') if act: Conv.default_act = eval(act) # redefine default activation, i.e. Conv.default_act = nn.SiLU() if verbose: LOGGER.info(f"{colorstr('activation:')} {act}") # print layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args m = eval(m) if isinstance(m, str) else m # eval strings for j, a in enumerate(args): with contextlib.suppress(NameError): args[j] = eval(a) if isinstance(a, str) else a # eval strings n = n_ = max(round(n * gd), 1) if n > 1 else n # depth gain if m in { Classify, Conv, ConvTranspose, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, Focus, BottleneckCSP, C1, C2, C2f, C3, C3TR, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x}: c1, c2 = ch[f], args[0] if c2 != nc: # if c2 not equal to number of classes (i.e. for Classify() output) c2 = make_divisible(c2 * gw, 8) args = [c1, c2, *args[1:]] if m in {BottleneckCSP, C1, C2, C2f, C3, C3TR, C3Ghost, C3x}: args.insert(2, n) # number of repeats n = 1 elif m is nn.BatchNorm2d: args = [ch[f]] elif m is Concat: c2 = sum(ch[x] for x in f) elif m in {Detect, Segment}: args.append([ch[x] for x in f]) if m is Segment: args[2] = make_divisible(args[2] * gw, 8) else: c2 = ch[f] m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module t = str(m)[8:-2].replace('__main__.', '') # module type m.np = sum(x.numel() for x in m_.parameters()) # number params m_.i, m_.f, m_.type = i, f, t # attach index, 'from' index, type if verbose: LOGGER.info(f'{i:>3}{str(f):>20}{n_:>3}{m.np:10.0f} {t:<45}{str(args):<30}') # print save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist layers.append(m_) if i == 0: ch = [] ch.append(c2) return nn.Sequential(*layers), sorted(save)