from transformers import AutoFeatureExtractor, YolosForObjectDetection import gradio as gr from PIL import Image import torch import matplotlib.pyplot as plt import io import numpy as np import os os.system("pip -qq install yoloxdetect==0.0.7") from yoloxdetect import YoloxDetector # Images torch.hub.download_url_to_file('https://tochkanews.ru/wp-content/uploads/2020/09/0.jpg', '1.jpg') torch.hub.download_url_to_file('https://s.rdrom.ru/1/pubs/4/35893/1906770.jpg', '2.jpg') torch.hub.download_url_to_file('https://static.mk.ru/upload/entities/2022/04/17/07/articles/detailPicture/5b/39/28/b6/ffb1aa636dd62c30e6ff670f84474f75.jpg', '3.jpg') COLORS = [[0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125], [0.494, 0.184, 0.556], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933]] def get_class_list_from_input(classes_string: str): if classes_string == "": return [] classes_list = classes_string.split(",") classes_list = [x.strip() for x in classes_list] return classes_list def plot_results(pil_img, prob, boxes, model, classes_list): plt.figure(figsize=(16,10)) plt.imshow(pil_img) ax = plt.gca() colors = COLORS * 100 for p, (xmin, ymin, xmax, ymax), c in zip(prob, boxes.tolist(), colors): cl = p.argmax() object_class = model.config.id2label[cl.item()] if len(classes_list) > 0 : if object_class not in classes_list: continue ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, fill=False, color=c, linewidth=3)) text = f'{object_class}: {p[cl]:0.2f}' ax.text(xmin, ymin, text, fontsize=15, bbox=dict(facecolor='yellow', alpha=0.5)) plt.axis('off') return fig2img(plt.gcf()) def fig2img(fig): buf = io.BytesIO() fig.savefig(buf) buf.seek(0) img = Image.open(buf) return img def inference( image_path: gr.inputs.Image = None, model_path: gr.inputs.Dropdown = 'kadirnar/yolox_s-v0.1.1', image_size: gr.inputs.Slider = 640, prob_threshold = 0.8, "", ): if model_name in ("yolox_s-v0.1.1", "yolox_m-v0.1.1", "yolox_tiny-v0.1.1"): model = YoloxDetector(f"kadirnar/{model_name}", device="cpu", hf_model=True) pred = model.predict(image_path=image_path, image_size=image_size) return pred else: feature_extractor = AutoFeatureExtractor.from_pretrained(f"hustvl/{model_name}") model = YolosForObjectDetection.from_pretrained(f"hustvl/{model_name}") img = Image.fromarray(img) pixel_values = feature_extractor(img, return_tensors="pt").pixel_values with torch.no_grad(): outputs = model(pixel_values, output_attentions=True) probas = outputs.logits.softmax(-1)[0, :, :-1] keep = probas.max(-1).values > prob_threshold target_sizes = torch.tensor(img.size[::-1]).unsqueeze(0) postprocessed_outputs = feature_extractor.post_process(outputs, target_sizes) bboxes_scaled = postprocessed_outputs[0]['boxes'] classes_list = get_class_list_from_input(classes_to_show) res_img = plot_results(img, probas[keep], bboxes_scaled[keep], model, classes_list) return res_img classes_to_show = gr.components.Textbox(placeholder="e.g. person, boat", label="Classes to use (empty means all classes)") inputs = [ gr.inputs.Image(type="filepath", label="Input Image"), gr.inputs.Dropdown( label="Model Path", choices=[ "yolox_s-v0.1.1", "yolox_m-v0.1.1", "yolox_tiny-v0.1.1", "yolos-tiny", "yolos-small", "yolos-base", "yolos-small-300", "yolos-small-dwr" ], default="kadirnar/yolox_s-v0.1.1", ), gr.inputs.Slider(minimum=0, maximum=1.0, step=0.01, default=0.9, label="Probability Threshold"), gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"), classes_to_show, ] outputs = gr.outputs.Image(type="filepath", label="Output Image") examples = [ ["1.jpg", "kadirnar/yolox_m-v0.1.1", 0.8, 640, ""], ["2.jpg", "kadirnar/yolox_s-v0.1.1", 0.8, 640, ""], ["3.jpg", "kadirnar/yolox_tiny-v0.1.1", 0.8, 640, ""], ] demo_app = gr.Interface( fn=inference, inputs=inputs, outputs=outputs, title="Object Detection with YOLO", examples=examples, cache_examples=True, theme='huggingface', ) demo_app.launch(debug=True, enable_queue=True)