import numpy as np import torch import sys from fastai.vision.all import * import gradio as gr title = "SavtaDepth WebApp" description = "Savta Depth is a collaborative Open Source Data Science project for monocular depth estimation - Turn 2d photos into 3d photos. To test the model and code please check out the link bellow." article = "
" examples = [ ["examples/00008.jpg"], ["examples/00045.jpg"], ] favicon = "examples/favicon.ico" thumbnail = "examples/SavtaDepth.png" learner = unet_learner(resnet34, path='src/') learner.load('model') def sepia(input_img): sepia_filter = np.array( [[0.393, 0.769, 0.189], [0.349, 0.686, 0.168], [0.272, 0.534, 0.131]] ) sepia_img = input_img.dot(sepia_filter.T) sepia_img /= sepia_img.max() return sepia_img def main(): iface = gr.Interface(sepia, gr.inputs.Image(shape=(640,480)), "image", title = title, description = description, article = article, examples = examples,theme ="peach",thumbnail=thumbnail) iface.launch(favicon_path=favicon,auth=("admin", "dagshubsota123"),server_name="0.0.0.0") # enable_queue=True,auth=("admin", "pass1234") if __name__ == '__main__': main()