import numpy as np from PIL import Image from tqdm import tqdm def compute_errors(target, prediction): thresh = np.maximum((target / prediction), (prediction / target)) a1 = (thresh < 1.25).mean() a2 = (thresh < 1.25 ** 2).mean() a3 = (thresh < 1.25 ** 3).mean() abs_rel = np.mean(np.abs(target - prediction) / target) sq_rel = np.mean(((target - prediction) ** 2) / target) rmse = (target - prediction) ** 2 rmse = np.sqrt(rmse.mean()) rmse_log = (np.log(target) - np.log(prediction)) ** 2 rmse_log = np.sqrt(rmse_log.mean()) err = np.log(prediction) - np.log(target) silog = np.sqrt(np.mean(err ** 2) - np.mean(err) ** 2) * 100 log_10 = (np.abs(np.log10(target) - np.log10(prediction))).mean() return a1, a2, a3, abs_rel, sq_rel, rmse, rmse_log, silog, log_10 def compute_eval_metrics(test_files): min_depth_eval = 1e-3 max_depth_eval = 10 num_samples = len(test_files) a1 = np.zeros(num_samples, np.float32) a2 = np.zeros(num_samples, np.float32) a3 = np.zeros(num_samples, np.float32) abs_rel = np.zeros(num_samples, np.float32) sq_rel = np.zeros(num_samples, np.float32) rmse = np.zeros(num_samples, np.float32) rmse_log = np.zeros(num_samples, np.float32) silog = np.zeros(num_samples, np.float32) log10 = np.zeros(num_samples, np.float32) for i in tqdm(range(num_samples), desc="Calculating metrics for test data", total=num_samples): sample_path = test_files[i] target_path = str(sample_path.parent/(sample_path.stem + "_depth.png")) pred_path = "src/eval/" + str(sample_path.stem) + "_pred.png" target_image = Image.open(target_path) pred_image = Image.open(pred_path) target = np.asarray(target_image) pred = np.asarray(pred_image) target = target / 25.0 pred = pred / 25.0 pred[pred < min_depth_eval] = min_depth_eval pred[pred > max_depth_eval] = max_depth_eval pred[np.isinf(pred)] = max_depth_eval target[np.isinf(target)] = 0 target[np.isnan(target)] = 0 valid_mask = np.logical_and(target > min_depth_eval, target < max_depth_eval) a1[i], a2[i], a3[i], abs_rel[i], sq_rel[i], rmse[i], rmse_log[i], silog[i], log10[i] = \ compute_errors(target[valid_mask], pred[valid_mask]) print("{:>7}, {:>7}, {:>7}, {:>7}, {:>7}, {:>7}, {:>7}, {:>7}, {:>7}".format( 'd1', 'd2', 'd3', 'AbsRel', 'SqRel', 'RMSE', 'RMSElog', 'SILog', 'log10')) print("{:7.3f}, {:7.3f}, {:7.3f}, {:7.3f}, {:7.3f}, {:7.3f}, {:7.3f}, {:7.3f}, {:7.3f}".format( a1.mean(), a2.mean(), a3.mean(), abs_rel.mean(), sq_rel.mean(), rmse.mean(), rmse_log.mean(), silog.mean(), log10.mean())) return dict(a1=a1.mean(), a2=a2.mean(), a3=a3.mean(), abs_rel=abs_rel.mean(), sq_rel=sq_rel.mean(), rmse=rmse.mean(), rmse_log=rmse_log.mean(), log10=log10.mean(), silog=silog.mean())