File size: 1,371 Bytes
b9f0115
 
 
 
 
0ecdec8
b9f0115
 
 
 
 
 
a83472e
 
b9f0115
 
 
 
 
 
 
 
 
5dc6bd9
 
b9f0115
5dc6bd9
 
b9f0115
5dc6bd9
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import numpy as np

import gradio as gr

title = "SavtaDepth WebApp"
description = "Savta Depth is a collaborative Open Source Data Science project for monocular depth estimation - Turn 2d photos into 3d photos. To test the model and code please check out the link bellow."
article = "<p style='text-align: center'><a href='https://dagshub.com/OperationSavta/SavtaDepth' target='_blank'>SavtaDepth Project from OperationSavta</a></p><p style='text-align: center'><a href='https://colab.research.google.com/drive/1XU4DgQ217_hUMU1dllppeQNw3pTRlHy1?usp=sharing' target='_blank'>Google Colab Demo</a></p></center></p>"

examples = [
    ["examples/00008.jpg"],
    ["examples/00045.jpg"],
]
favicon = "examples/favicon.ico"
thumbnail = "examples/SavtaDepth.png"

def sepia(input_img):
    sepia_filter = np.array(
        [[0.393, 0.769, 0.189], [0.349, 0.686, 0.168], [0.272, 0.534, 0.131]]
    )
    sepia_img = input_img.dot(sepia_filter.T)
    sepia_img /= sepia_img.max()
    return sepia_img

def main():
	iface = gr.Interface(sepia, gr.inputs.Image(shape=(200, 200)), "image", title = title, description = description, article = article, examples = examples,theme ="peach",thumbnail=thumbnail)

	iface.launch(favicon_path=favicon,auth=("admin", "dagshubsota123"),server_name="0.0.0.0")
# enable_queue=True,auth=("admin", "pass1234")

if __name__ == '__main__':
	main()