import gradio as gr import torch from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer title = "🦅Falcon 🗨️ChatBot" description = "Falcon-RW-1B is a 1B parameters causal decoder-only model built by TII and trained on 350B tokens of RefinedWeb." examples = [["How are you?"]] tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-rw-1b") model = AutoModelForCausalLM.from_pretrained( "tiiuae/falcon-rw-1b", trust_remote_code=True, torch_dtype=torch.float16 ) class StopOnTokens(StoppingCriteria): def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: stop_ids = [29, 0] for stop_id in stop_ids: if input_ids[0][-1] == stop_id: return True return False def predict(message, history): history_transformer_format = history + [[message, ""]] stop = StopOnTokens() #Construct the input message string for the model by concatenating the current system message and conversation history messages = "".join(["".join(["\n:"+item[0], "\n:"+item[1]]) #curr_system_message + for item in history_transformer_format]) #Tokenize the messages string model_inputs = tokenizer([messages], return_tensors="pt") streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( model_inputs, streamer=streamer, max_new_tokens=1024, do_sample=True, top_p=0.95, top_k=1000, temperature=1.0, num_beams=1, stopping_criteria=StoppingCriteriaList([stop]) ) #t = Thread(target=model.generate, kwargs=generate_kwargs) #t.start() model.generate(**generate_kwargs) #Initialize an empty string to store the generated text partial_message = "" for new_token in streamer: if new_token != '<': partial_message += new_token yield partial_message gr.ChatInterface(predict, title=title, description=description, examples=examples, cache_examples=True, retry_btn=None, undo_btn="Delete Previous", clear_btn="Clear", chatbot=gr.Chatbot(height=300), textbox=gr.Textbox(placeholder="Chat with me").queue().launch()