from share import * import pytorch_lightning as pl from torch.utils.data import DataLoader from utils.sam_dataset import SAMDataset from cldm.logger import ImageLogger from cldm.model import create_model, load_state_dict import torch # Configs resume_path = './models/control_sd21_ini.ckpt' batch_size = 4 logger_freq = 300 learning_rate = 1e-5 sd_locked = True only_mid_control = False data_path = '../data/files' txt_path = '../data/data_85616.txt' # First use cpu to load models. Pytorch Lightning will automatically move it to GPUs. model = create_model('./models/cldm_v21.yaml').cpu() model.load_state_dict(load_state_dict(resume_path, location='cpu')) model.learning_rate = learning_rate model.sd_locked = sd_locked model.only_mid_control = only_mid_control # Misc dataset = SAMDataset(data_path=data_path, txt_path=txt_path) dataloader = DataLoader(dataset, num_workers=16, batch_size=batch_size, shuffle=True) logger = ImageLogger(batch_frequency=logger_freq) trainer = pl.Trainer(gpus=8, strategy="ddp", precision=32, callbacks=[logger]) # Train! trainer.fit(model, dataloader)