# Edit Anything trained with Stable Diffusion + ControlNet + SAM + BLIP2 from torchvision.utils import save_image from PIL import Image from pytorch_lightning import seed_everything import cv2 import einops import gradio as gr import numpy as np import torch import random import requests from io import BytesIO from annotator.util import resize_image, HWC3 device = "cuda" if torch.cuda.is_available() else "cpu" use_blip = False use_gradio = False # Diffusion init using diffusers. import groundingdino.datasets.transforms as T from groundingdino.models import build_model from groundingdino.util import box_ops from groundingdino.util.slconfig import SLConfig from groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap from groundingdino.util.inference import annotate, load_image, predict from segment_anything import build_sam, SamPredictor from segment_anything.utils.amg import remove_small_regions # diffusers==0.14.0 required. from diffusers import ControlNetModel, UniPCMultistepScheduler from utils.stable_diffusion_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline import torch base_model_path = "stabilityai/stable-diffusion-2-inpainting" controlnet_path = "shgao/edit-anything-v0-1-1" controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16) pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained( base_model_path, controlnet=controlnet, torch_dtype=torch.float16 ) # speed up diffusion process with faster scheduler and memory optimization pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) # remove following line if xformers is not installed pipe.enable_xformers_memory_efficient_attention() # pipe.enable_model_cpu_offload() # disable for now because of unknow bug in accelerate pipe.to(device) # Segment-Anything init. # pip install git+https://github.com/facebookresearch/segment-anything.git from segment_anything import sam_model_registry, SamAutomaticMaskGenerator sam_checkpoint = "./models/sam_vit_h_4b8939.pth" groundingdino_checkpoint = "./models/groundingdino_swint_ogc.pth" groundingdino_config_file = "./GroundingDINO_SwinT_OGC.py" model_type = "default" sam = sam_model_registry[model_type](checkpoint=sam_checkpoint) sam.to(device=device) mask_generator = SamAutomaticMaskGenerator(sam) def load_groundingdino_model(model_config_path, model_checkpoint_path): args = SLConfig.fromfile(model_config_path) args.device = device model = build_model(args) checkpoint = torch.load(model_checkpoint_path, map_location="cpu") load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False) print(load_res) _ = model.eval() return model grounding_model = load_groundingdino_model(groundingdino_config_file, groundingdino_checkpoint).to(device) sam_predictor = SamPredictor(build_sam(checkpoint=sam_checkpoint).to(device=device)) # BLIP2 init. if use_blip: # need the latest transformers # pip install git+https://github.com/huggingface/transformers.git from transformers import AutoProcessor, Blip2ForConditionalGeneration processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b") blip_model = Blip2ForConditionalGeneration.from_pretrained( "Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16) blip_model.to(device) blip_model.to(device) def get_blip2_text(image): inputs = processor(image, return_tensors="pt").to(device, torch.float16) generated_ids = blip_model.generate(**inputs, max_new_tokens=50) generated_text = processor.batch_decode( generated_ids, skip_special_tokens=True)[0].strip() return generated_text def show_anns(anns): if len(anns) == 0: return sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True) full_img = None # for ann in sorted_anns: for i in range(len(sorted_anns)): ann = anns[i] m = ann['segmentation'] if full_img is None: full_img = np.zeros((m.shape[0], m.shape[1], 3)) map = np.zeros((m.shape[0], m.shape[1]), dtype=np.uint16) map[m != 0] = i + 1 color_mask = np.random.random((1, 3)).tolist()[0] full_img[m != 0] = color_mask full_img = full_img * 255 # anno encoding from https://github.com/LUSSeg/ImageNet-S res = np.zeros((map.shape[0], map.shape[1], 3)) res[:, :, 0] = map % 256 res[:, :, 1] = map // 256 res.astype(np.float32) return full_img, res def get_sam_control(image): masks = mask_generator.generate(image) full_img, res = show_anns(masks) return full_img, res def prompt2mask(original_image, caption, box_threshold=0.25, text_threshold=0.25, num_boxes=2): def image_transform_grounding(init_image): transform = T.Compose([ T.RandomResize([800], max_size=1333), T.ToTensor(), T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) image, _ = transform(init_image, None) # 3, h, w return init_image, image image_np = np.array(original_image, dtype=np.uint8) caption = caption.lower() caption = caption.strip() if not caption.endswith("."): caption = caption + "." _, image_tensor = image_transform_grounding(original_image) boxes, logits, phrases = predict(grounding_model, image_tensor, caption, box_threshold, text_threshold, device='cpu') print(logits) print('number of boxes: ', boxes.size(0)) # exit(0) # from PIL import Image, ImageDraw, ImageFont H, W = original_image.size[1], original_image.size[0] boxes = boxes * torch.Tensor([W, H, W, H]) boxes[:, :2] = boxes[:, :2] - boxes[:, 2:] / 2 boxes[:, 2:] = boxes[:, 2:] + boxes[:, :2] # draw = ImageDraw.Draw(original_image) # for box in boxes: # # from 0..1 to 0..W, 0..H # # box = box * torch.Tensor([W, H, W, H]) # # # from xywh to xyxy # # box[:2] -= box[2:] / 2 # # box[2:] += box[:2] # # random color # color = tuple(np.random.randint(0, 255, size=3).tolist()) # # draw # x0, y0, x1, y1 = box # x0, y0, x1, y1 = int(x0), int(y0), int(x1), int(y1) # # draw.rectangle([x0, y0, x1, y1], outline=color, width=6) # original_image.save('debug.jpg') # exit(0) final_m = torch.zeros((image_np.shape[0], image_np.shape[1])) if boxes.size(0) > 0: sam_predictor.set_image(image_np) transformed_boxes = sam_predictor.transform.apply_boxes_torch(boxes, image_np.shape[:2]) masks, _, _ = sam_predictor.predict_torch( point_coords=None, point_labels=None, boxes=transformed_boxes.to(device), multimask_output=False, ) # remove small disconnected regions and holes fine_masks = [] for mask in masks.to('cpu').numpy(): # masks: [num_masks, 1, h, w] fine_masks.append(remove_small_regions(mask[0], 400, mode="holes")[0]) masks = np.stack(fine_masks, axis=0)[:, np.newaxis] masks = torch.from_numpy(masks) num_obj = min(len(logits), num_boxes) for obj_ind in range(num_obj): # box = boxes[obj_ind] m = masks[obj_ind][0] final_m += m final_m = (final_m > 0).to('cpu').numpy() # print(final_m.max(), final_m.min()) return np.dstack((final_m, final_m, final_m)) * 255 def process(input_image, mask_prompt, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, guess_mode, strength, scale, seed, eta): with torch.no_grad(): mask_image = np.array(prompt2mask(input_image, mask_prompt), dtype=np.uint8) input_image = np.array(input_image, dtype=np.uint8)[:, :, :3] if use_blip: print("Generating text:") blip2_prompt = get_blip2_text(input_image) print("Generated text:", blip2_prompt) if len(prompt) > 0: prompt = blip2_prompt + ',' + prompt else: prompt = blip2_prompt print("All text:", prompt) input_image = HWC3(input_image) img = resize_image(input_image, image_resolution) H, W, C = img.shape print("Generating SAM seg:") # the default SAM model is trained with 1024 size. full_segmask, detected_map = get_sam_control( resize_image(input_image, detect_resolution)) detected_map = HWC3(detected_map.astype(np.uint8)) detected_map = cv2.resize( detected_map, (W, H), interpolation=cv2.INTER_LINEAR) control = torch.from_numpy( detected_map.copy()).float().cuda() control = torch.stack([control for _ in range(num_samples)], dim=0) control = einops.rearrange(control, 'b h w c -> b c h w').clone() mask_image = HWC3(mask_image.astype(np.uint8)) mask_image = cv2.resize( mask_image, (W, H), interpolation=cv2.INTER_LINEAR) mask_image = Image.fromarray(mask_image) if seed == -1: seed = random.randint(0, 65535) seed_everything(seed) generator = torch.manual_seed(seed) x_samples = pipe( image=img, mask_image=mask_image, prompt=[prompt + ', ' + a_prompt] * num_samples, negative_prompt=[n_prompt] * num_samples, num_images_per_prompt=num_samples, num_inference_steps=ddim_steps, generator=generator, controlnet_conditioning_image=control.type(torch.float16), height=H, width=W, ).images results = [x_samples[i] for i in range(num_samples)] return [full_segmask, mask_image] + results def download_image(url): response = requests.get(url) return Image.open(BytesIO(response.content)).convert("RGB") # disable gradio when not using GUI. if not use_gradio: image_path = "assets/dog.png" input_image_pil = Image.open(image_path).convert('RGB') input_image = np.array(input_image_pil, dtype=np.uint8)[:, :, :3] mask_prompt = 'bench.' # mask_image = np.array(prompt2mask(input_image, mask_prompt), dtype=np.uint8) prompt = "cat" a_prompt = 'best quality, extremely detailed' n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality' num_samples = 3 image_resolution = 512 detect_resolution = 512 ddim_steps = 30 guess_mode = False strength = 1.0 scale = 9.0 seed = -1 eta = 0.0 outputs = process(input_image_pil, mask_prompt, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, guess_mode, strength, scale, seed, eta) image_list = [] input_image = resize_image(input_image, 512) image_list.append(torch.tensor(input_image)) for i in range(len(outputs)): each = outputs[i] if type(each) is not np.ndarray: each = np.array(each, dtype=np.uint8) each = resize_image(each, 512) print(i, each.shape) image_list.append(torch.tensor(each)) image_list = torch.stack(image_list).permute(0, 3, 1, 2) save_image(image_list, "sample.jpg", nrow=3, normalize=True, value_range=(0, 255)) else: print("The GUI is not tested yet. Please open an issue if you find bugs.") block = gr.Blocks().queue() with block: with gr.Row(): gr.Markdown( "## Edit Anything powered by ControlNet+SAM+BLIP2+Stable Diffusion") with gr.Row(): with gr.Column(): input_image = gr.Image(source='upload', type="numpy") prompt = gr.Textbox(label="Prompt") run_button = gr.Button(label="Run") with gr.Accordion("Advanced options", open=False): num_samples = gr.Slider( label="Images", minimum=1, maximum=12, value=1, step=1) image_resolution = gr.Slider( label="Image Resolution", minimum=256, maximum=768, value=512, step=64) strength = gr.Slider( label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01) guess_mode = gr.Checkbox(label='Guess Mode', value=False) detect_resolution = gr.Slider( label="SAM Resolution", minimum=128, maximum=2048, value=1024, step=1) ddim_steps = gr.Slider( label="Steps", minimum=1, maximum=100, value=20, step=1) scale = gr.Slider( label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1) seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True) eta = gr.Number(label="eta (DDIM)", value=0.0) mask_prompt = gr.Textbox( label="Mask Prompt", value='best quality, extremely detailed') a_prompt = gr.Textbox( label="Added Prompt", value='best quality, extremely detailed') n_prompt = gr.Textbox(label="Negative Prompt", value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality') with gr.Column(): result_gallery = gr.Gallery( label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto') ips = [input_image, mask_prompt, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, guess_mode, strength, scale, seed, eta] run_button.click(fn=process, inputs=ips, outputs=[result_gallery]) block.launch(server_name='0.0.0.0')