from PIL import Image import json from transformers import AutoProcessor, Blip2ForConditionalGeneration import torch import os processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b") model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16) device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) def get_blip2_text(image): inputs = processor(image, return_tensors="pt").to(device, torch.float16) generated_ids = model.generate(**inputs, max_new_tokens=50) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() return generated_text data_path = "files" save_path = "" image_names = os.listdir(data_path) image_names = sorted(image_names) text_data = {} f = open("data.txt","w") for each in image_names: if '.jpg' in each: this_data = {} this_data['target'] = each this_data['source'] = each[:-4]+'.json' this_image = Image.open(os.path.join(data_path, each)) print(each) generated_text = get_blip2_text(this_image) this_data['prompt'] = generated_text print(this_data) f.write(str(this_data)+"\n") f.close()