import gradio as gr from fastai.vision.all import * import skimage import pathlib plt = platform.system() if plt == 'Linux' : pathlib.WindowsPath = pathlib.PosixPath learn = load_learner('xres18.pkl') labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred,pred_idx,probs = learn.predict(img) return {labels[i] : float(probs[i]) for i in range(len(labels))} title = 'Cell Identifier' description = 'A cell identifier detector trained on custom dataset with fastai. Created using Gradio and HuggingFace Spaces.' examples = [] enable_queue = True gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(512,512)), outputs=gr.outputs.Label(num_top_classes=3), title=title, description=description, examples=examples, enable_queue=enable_queue).launch(share=True)