from typing import Tuple import torch import torch.nn as nn from torch.nn import functional as F from modules.commons import sequence_mask import numpy as np from dac.nn.quantize import VectorQuantize # f0_bin = 256 f0_max = 1100.0 f0_min = 50.0 f0_mel_min = 1127 * np.log(1 + f0_min / 700) f0_mel_max = 1127 * np.log(1 + f0_max / 700) def f0_to_coarse(f0, f0_bin): f0_mel = 1127 * (1 + f0 / 700).log() a = (f0_bin - 2) / (f0_mel_max - f0_mel_min) b = f0_mel_min * a - 1. f0_mel = torch.where(f0_mel > 0, f0_mel * a - b, f0_mel) # torch.clip_(f0_mel, min=1., max=float(f0_bin - 1)) f0_coarse = torch.round(f0_mel).long() f0_coarse = f0_coarse * (f0_coarse > 0) f0_coarse = f0_coarse + ((f0_coarse < 1) * 1) f0_coarse = f0_coarse * (f0_coarse < f0_bin) f0_coarse = f0_coarse + ((f0_coarse >= f0_bin) * (f0_bin - 1)) return f0_coarse class InterpolateRegulator(nn.Module): def __init__( self, channels: int, sampling_ratios: Tuple, is_discrete: bool = False, in_channels: int = None, # only applies to continuous input vector_quantize: bool = False, # whether to use vector quantization, only applies to continuous input codebook_size: int = 1024, # for discrete only out_channels: int = None, groups: int = 1, n_codebooks: int = 1, # number of codebooks quantizer_dropout: float = 0.0, # dropout for quantizer f0_condition: bool = False, n_f0_bins: int = 512, ): super().__init__() self.sampling_ratios = sampling_ratios out_channels = out_channels or channels model = nn.ModuleList([]) if len(sampling_ratios) > 0: self.interpolate = True for _ in sampling_ratios: module = nn.Conv1d(channels, channels, 3, 1, 1) norm = nn.GroupNorm(groups, channels) act = nn.Mish() model.extend([module, norm, act]) else: self.interpolate = False model.append( nn.Conv1d(channels, out_channels, 1, 1) ) self.model = nn.Sequential(*model) self.embedding = nn.Embedding(codebook_size, channels) self.is_discrete = is_discrete self.mask_token = nn.Parameter(torch.zeros(1, channels)) self.n_codebooks = n_codebooks if n_codebooks > 1: self.extra_codebooks = nn.ModuleList([ nn.Embedding(codebook_size, channels) for _ in range(n_codebooks - 1) ]) self.extra_codebook_mask_tokens = nn.ParameterList([ nn.Parameter(torch.zeros(1, channels)) for _ in range(n_codebooks - 1) ]) self.quantizer_dropout = quantizer_dropout if f0_condition: self.f0_embedding = nn.Embedding(n_f0_bins, channels) self.f0_condition = f0_condition self.n_f0_bins = n_f0_bins self.f0_bins = torch.arange(2, 1024, 1024 // n_f0_bins) self.f0_mask = nn.Parameter(torch.zeros(1, channels)) else: self.f0_condition = False if not is_discrete: self.content_in_proj = nn.Linear(in_channels, channels) if vector_quantize: self.vq = VectorQuantize(channels, codebook_size, 8) def forward(self, x, ylens=None, n_quantizers=None, f0=None): # apply token drop if self.training: n_quantizers = torch.ones((x.shape[0],)) * self.n_codebooks dropout = torch.randint(1, self.n_codebooks + 1, (x.shape[0],)) n_dropout = int(x.shape[0] * self.quantizer_dropout) n_quantizers[:n_dropout] = dropout[:n_dropout] n_quantizers = n_quantizers.to(x.device) # decide whether to drop for each sample in batch else: n_quantizers = torch.ones((x.shape[0],), device=x.device) * (self.n_codebooks if n_quantizers is None else n_quantizers) if self.is_discrete: if self.n_codebooks > 1: assert len(x.size()) == 3 x_emb = self.embedding(x[:, 0]) for i, emb in enumerate(self.extra_codebooks): x_emb = x_emb + (n_quantizers > i+1)[..., None, None] * emb(x[:, i+1]) # add mask token if not using this codebook # x_emb = x_emb + (n_quantizers <= i+1)[..., None, None] * self.extra_codebook_mask_tokens[i] x = x_emb elif self.n_codebooks == 1: if len(x.size()) == 2: x = self.embedding(x) else: x = self.embedding(x[:, 0]) else: x = self.content_in_proj(x) # x in (B, T, D) mask = sequence_mask(ylens).unsqueeze(-1) if self.interpolate: x = F.interpolate(x.transpose(1, 2).contiguous(), size=ylens.max(), mode='nearest') else: x = x.transpose(1, 2).contiguous() mask = mask[:, :x.size(2), :] ylens = ylens.clamp(max=x.size(2)).long() if self.f0_condition: if f0 is None: x = x + self.f0_mask.unsqueeze(-1) else: quantized_f0 = torch.bucketize(f0, self.f0_bins.to(f0.device)) # (N, T) #quantized_f0 = f0_to_coarse(f0, self.n_f0_bins) #quantized_f0 = quantized_f0.clamp(0, self.n_f0_bins - 1).long() f0_emb = self.f0_embedding(quantized_f0) f0_emb = F.interpolate(f0_emb.transpose(1, 2).contiguous(), size=ylens.max(), mode='nearest') x = x + f0_emb out = self.model(x).transpose(1, 2).contiguous() if hasattr(self, 'vq'): out_q, commitment_loss, codebook_loss, codes, out, = self.vq(out.transpose(1, 2)) out_q = out_q.transpose(1, 2) return out_q * mask, ylens, codes, commitment_loss, codebook_loss olens = ylens return out * mask, olens, None, None, None