import gradio as gr import torch from PIL import Image from transformers import BlipProcessor, BlipForConditionalGeneration, VisionEncoderDecoderModel, ViTFeatureExtractor, AutoTokenizer # Load BLIP model blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large") blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large") # Load ViT-GPT2 model gpt2_model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning") gpt2_feature_extractor = ViTFeatureExtractor.from_pretrained("nlpconnect/vit-gpt2-image-captioning") gpt2_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning") # Set device device = torch.device("cuda" if torch.cuda.is_available() else "cpu") gpt2_model.to(device) # Generation parameters max_length = 16 num_beams = 4 gen_kwargs = {"max_length": max_length, "num_beams": num_beams} def blip_caption(img_path, min_len, max_len): raw_image = Image.open(img_path).convert('RGB') inputs = blip_processor(raw_image, return_tensors="pt") out = blip_model.generate(**inputs, min_length=min_len, max_length=max_len) return blip_processor.decode(out[0], skip_special_tokens=True) def gpt2_caption(img_path): raw_image = Image.open(img_path).convert("RGB") pixel_values = gpt2_feature_extractor(images=raw_image, return_tensors="pt").pixel_values pixel_values = pixel_values.to(device) output_ids = gpt2_model.generate(pixel_values, **gen_kwargs) preds = gpt2_tokenizer.batch_decode(output_ids, skip_special_tokens=True) return preds[0].strip() def generate_captions(img, min_len, max_len): blip_result = blip_caption(img, min_len, max_len) gpt2_result = gpt2_caption(img) return blip_result, gpt2_result iface = gr.Interface( fn=generate_captions, inputs=[ gr.Image(type='filepath', label='Image'), gr.Slider(label='Minimum Length', minimum=1, maximum=100, value=30), gr.Slider(label='Maximum Length', minimum=1, maximum=1000, value=100) ], outputs=[ gr.Textbox(label='BLIP Caption'), gr.Textbox(label='GPT-2 Caption') ], title='Image Captioning', description="This application generates descriptive captions for images using two advanced models: BLIP and ViT-GPT-2. Simply upload an image and receive two unique captions, showcasing different perspectives from each model. Customize the caption length with easy-to-use sliders and enjoy a seamless, interactive experience. Perfect for content creation, accessibility, and research.", theme=gr.themes.Base(primary_hue="teal", secondary_hue="teal", neutral_hue="slate"), ) iface.launch()