# Use a pipeline as a high-level helper from transformers import pipeline import gradio as gr import torch import gc translator = pipeline("translation", model="facebook/nllb-200-distilled-600M", torch_dtype=torch.bfloat16) lang_list = ["English", "عربى", "French"] lang_code = {"English":"eng_Latn", "عربى" : "arz_Arab", "French" : "fra_Latn"} from_lang="eng_Latn" to_lang="arz_Arab" def claer(): del translator gc.collect() def transalate(text) : # claer() text_translated = translator(text, src_lang=from_lang, tgt_lang=to_lang) print(to_lang) return text_translated[0]['translation_text'] def form(): return gr.Interface(transalate, inputs="textbox", outputs="text") def rs_change_from(c): from_lang = lang_code[c] print(from_lang) def rs_change_to(c): to_lang = lang_code[c] print(to_lang) def get(local_state): with gr.Column() as result: gr.HTML("
") gr.Markdown("## Text Generation") dropdownFrom = gr.Dropdown( lang_code, label="Transalte From", info="Will add more later!" ) dropdownFrom.select(rs_change_from,dropdownFrom) dropdownTo = gr.Dropdown( lang_list, label="Transalte To", info="Will add more later!" ) dropdownTo.select(rs_change_to,dropdownTo) form() gr.HTML("



") return result # - Afrikaans: afr_Latn # - Chinese: zho_Hans # - Egyptian Arabic: arz_Arab # - French: fra_Latn # - German: deu_Latn # - Greek: ell_Grek # - Hindi: hin_Deva # - Indonesian: ind_Latn # - Italian: ita_Latn # - Japanese: jpn_Jpan # - Korean: kor_Hang # - Persian: pes_Arab # - Portuguese: por_Latn # - Russian: rus_Cyrl # - Spanish: spa_Latn # - Swahili: swh_Latn # - Thai: tha_Thai # - Turkish: tur_Latn # - Vietnamese: vie_Latn # - Zulu: zul_Latn