import numpy as np import re import streamlit as st import torch from transformers import AutoProcessor, UdopForConditionalGeneration from PIL import Image, ImageDraw # from datasets import load_dataset device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # UDOP uses 501 special loc ("location") tokens LAYOUT_VOCAB_SIZE = 501 def extract_coordinates(string): # Using regular expression to find all numbers in the string numbers = re.findall(r'\d+', string) # Converting the numbers to integers numbers = list(map(int, numbers)) # Ensuring there are exactly 4 numbers if len(numbers) >= 4: #if len(numbers) != 4: numbers = numbers[-4:] # Extracting coordinates x1, y1, x2, y2 = numbers else: return [] return [x1, y1, x2, y2] def unnormalize_box(box, image_width, image_height): x1 = box[0] / LAYOUT_VOCAB_SIZE * image_width y1 = box[1] / LAYOUT_VOCAB_SIZE * image_height x2 = box[2] / LAYOUT_VOCAB_SIZE * image_width y2 = box[3] / LAYOUT_VOCAB_SIZE * image_height return [x1, y1, x2, y2] processor = AutoProcessor.from_pretrained("microsoft/udop-large", apply_ocr=True) model = UdopForConditionalGeneration.from_pretrained("microsoft/udop-large") st.title("GenAI Demo (by ITT)") st.text("Upload and Select a document (/an image) to test the model.") #2 column layout col1, col2 = st.columns(2) with col1: # File selection uploaded_files = st.file_uploader("Upload document(s) [/image(s)]:", type=["docx", "pdf", "pptx", "jpg", "jpeg", "png"], accept_multiple_files=True, key="fileUpload") selected_file = st.selectbox("Select a document (/an image):", uploaded_files, format_func=lambda file: file.name if file else "None", key="fileSelect") # Display selected file if selected_file is not None and selected_file != "None": file_extension = selected_file.name.split(".")[-1] if file_extension in ["jpg", "jpeg", "png"]: image = Image.open(selected_file).convert("RGB") st.image(selected_file, caption="Selected Image") else: st.write("Selected file: ", selected_file.name) # Model Testing with col2: ## Question (/Prompt) # question = "Question answering. How many unsafe practice of Lifting Operation?" default_question = "Is this a Lifting Operation scene?" task_type = st.selectbox("Question Type:", ("Classification", "Question Answering", "Layout Analysis"), index=1, key="taskSelect") question_text = st.text_area("Prompt:", placeholder=default_question, key="questionInput") if question_text is not None: question = task_type + ". " + question_text else: question = task_type + ". " + default_question ## Test button testButton = st.button("Test Model", key="testStart") ## Perform Model Testing when Image is uploaded and selected as well as Test button is pressed if testButton and selected_file != "None": st.write("Testing the model with the selected image...") # encoding = processor(image, question, words, boxes=boxes, return_tensors="pt") model_encoding = processor(images=image, text=question, return_tensors="pt") model_output = model.generate(**model_encoding) match task_type: case "Classification": output_text = processor.batch_decode(model_output, skip_special_tokens=True)[0] st.write(output_text) case "Question Answering": output_text = processor.batch_decode(model_output, skip_special_tokens=True)[0] st.write(output_text) case "Layout Analysis": output_text = processor.batch_decode(model_output, skip_special_tokens=False)[0] mean = processor.image_processor.image_mean std = processor.image_processor.image_std unnormalized_image = (model_encoding.pixel_values.squeeze().numpy() * np.array(std)[:, None, None]) + np.array(mean)[:, None, None] unnormalized_image = (unnormalized_image * 255).astype(np.uint8) unnormalized_image = np.moveaxis(unnormalized_image, 0, -1) unnormalized_image = Image.fromarray(unnormalized_image) # Get the coordinates from the output text and denormalize them coordinates = extract_coordinates(output_text) if coordinates: coordinates = unnormalize_box(coordinates, unnormalized_image.width, unnormalized_image.height) draw = ImageDraw.Draw(unnormalized_image) draw.rectangle(coordinates, outline="red") st.image(unnormalized_image, caption="Output Image") else: st.write("Cannot obtain Bounding Box coordinates: " + output_text) elif testButton and selected_file == "None": st.write("Please upload and select a document (/an image).")