import gradio as gr from sentence_transformers import SentenceTransformer import chromadb import pandas as pd import os import json from pathlib import Path from llama_index.llms.anyscale import Anyscale from langchain_community.embeddings.sentence_transformer import SentenceTransformerEmbeddings # Load the sentence transformer model with 384 dimensions model = SentenceTransformer('all-MiniLM-L6-v2') # model = SentenceTransformerEmbeddings(model_name='thenlper/gte-large') # Ensure this model outputs 384-dimensional embeddings # Check the dimensionality of the model embedding_dim = model.get_sentence_embedding_dimension() print(f"Embedding Dimension: {embedding_dim}") # This should print 384 # Initialize the ChromaDB client chroma_client = chromadb.Client() # Function to build the database from CSV def build_database(): # Read the CSV file df = pd.read_csv('vector_store.csv') # Create a collection collection_name = 'Dataset-10k-companies' # Delete the existing collection if it exists # chroma_client.delete_collection(name=collection_name) # Create a new collection collection = chroma_client.create_collection(name=collection_name) # Ensure embeddings are 384-dimensional def ensure_dimensionality(embedding): embedding = eval(embedding.replace(',,', ',')) if len(embedding) != 384: raise ValueError("Embedding dimensionality is incorrect") return embedding # Add the data from the DataFrame to the collection collection.add( documents=df['documents'].tolist(), ids=df['ids'].tolist(), metadatas=df['metadatas'].apply(eval).tolist(), embeddings=df['embeddings'].apply(ensure_dimensionality).tolist() ) return collection # Build the database when the app starts collection = build_database() # Access the Anyscale API key from environment variables anyscale_api_key = os.environ.get('anyscale_api_key') # Instantiate the Anyscale client client = Anyscale(api_key=anyscale_api_key, model="meta-llama/Llama-2-70b-chat-hf") # Function to get relevant chunks def get_relevant_chunks(query, collection, top_n=3): query_embedding = model.encode(query).tolist() results = collection.query(query_embeddings=[query_embedding], n_results=top_n) relevant_chunks = [] for i in range(len(results['documents'][0])): chunk = results['documents'][0][i] source = results['metadatas'][0][i]['source'] page = results['metadatas'][0][i]['page'] relevant_chunks.append((chunk, source, page)) return relevant_chunks # Define system message for LLM qna_system_message = """ You are an assistant to Finsights analysts. Your task is to provide relevant information about the financial performance of the companies followed by Finsights. User input will include the necessary context for you to answer their questions. This context will begin with the token: ###Context. The context contains references to specific portions of documents relevant to the user's query, along with source links. The source for a context will begin with the token: ###Source. When crafting your response: 1. Select only the context relevant to answer the question. 2. Include the source links in your response. 3. User questions will begin with the token: ###Question. 4. If the question is irrelevant to Finsights, respond with: "I am an assistant for Finsight Docs. I can only help you with questions related to Finsights." Adhere to the following guidelines: - Your response should only address the question asked and nothing else. - Answer only using the context provided. - Do not mention anything about the context in your final answer. - If the answer is not found in the context, respond with: "I don't know." - Always quote the source when you use the context. Cite the relevant source at the end of your response under the section - Source: - Do not make up sources. Use only the links provided in the sources section of the context. You are prohibited from providing other links/sources. Here is an example of how to structure your response: Answer: [Answer] Source: [Source] """ # Create a user message template qna_user_message_template = """ ###Context Here are some documents and their source links that are relevant to the question mentioned below. {context} ###Question {question} """ # Function to get LLM response def get_llm_response(prompt, max_attempts=3): full_response = "" for attempt in range(max_attempts): try: response = client.complete(prompt, max_tokens=1000) # Increase max_tokens if possible chunk = response.text.strip() full_response += chunk if chunk.endswith((".", "!", "?")): # Check if response seems complete break else: prompt = "Please continue from where you left off:\n" + chunk[-100:] # Use the last 100 chars as context except Exception as e: print(f"Attempt {attempt + 1} failed with error: {e}") return full_response # Prediction function def predict(company, user_query): try: # Modify the query to include the company name modified_query = f"{user_query} for {company}" # Get relevant chunks relevant_chunks = get_relevant_chunks(modified_query, collection) # Prepare the context string context = "" for chunk, source, page in relevant_chunks: context += chunk + "\n" context += f"###Source {source}, Page {page}\n" # Prepare the user message user_message = qna_user_message_template.format(context=context, question=user_query) # Craft the prompt to pass to the Llama model prompt = f"{qna_system_message}\n\n{qna_user_message_template.format(context=context, question=user_query)}" # Generate the response using the Llama model through Anyscale answer = get_llm_response(prompt) # Extract the generated response # answer = response.text.strip() # Log the interaction log_interaction(company, user_query, context, answer) return answer except Exception as e: return f"An error occurred: {str(e)}" # Function to log interactions def log_interaction(company, user_query, context, answer): log_file = Path("interaction_log.jsonl") with log_file.open("a") as f: json.dump({ 'company': company, 'user_query': user_query, 'context': context, 'answer': answer }, f) f.write("\n") # Create Gradio interface company_list = ["MSFT", "AWS", "Meta", "Google", "IBM"] iface = gr.Interface( fn=predict, inputs=[ gr.Radio(company_list, label="Select Company"), gr.Textbox(lines=2, placeholder="Enter your query here...", label="User Query") ], outputs=gr.Textbox(label="Generated Answer"), title="Company Reports Q&A", description="Query the vector database and get an LLM response based on the documents in the collection." ) # Launch the interface iface.launch(share=True)