# Import the necessary libraries import subprocess import sys # Function to install a package using pip def install(package): subprocess.check_call([sys.executable, "-m", "pip", "install", package]) # Install required packages try: install("gradio") install("openai==1.23.2") install("tiktoken==0.6.0") install("pypdf==4.0.1") install("langchain==0.1.1") install("langchain-community==0.0.13") install("chromadb==0.4.22") install("sentence-transformers==2.3.1") except subprocess.CalledProcessError as e: print(f"An error occurred: {e}") import gradio as gr import os import uuid import json import pandas as pd import subprocess from openai import OpenAI from huggingface_hub import HfApi from huggingface_hub import CommitScheduler from langchain_community.embeddings.sentence_transformer import ( SentenceTransformerEmbeddings ) from langchain_community.vectorstores import Chroma #from google.colab import userdata, drive from pathlib import Path from langchain.document_loaders import PyPDFDirectoryLoader from langchain.text_splitter import RecursiveCharacterTextSplitter import json import tiktoken import pandas as pd import tiktoken # Define the embedding model and the vectorstore embedding_model = SentenceTransformerEmbeddings(model_name='thenlper/gte-large') # If dataset directory exixts, remove it and all of the contents within #if os.path.exists('dataset'): # !rm -rf dataset # If collection_db exists, remove it and all of the contents within #if os.path.exists('collection_db'): # !rm -rf dataset #Mount the Google Drive #drive.mount('/content/drive') #Upload Dataset-10k.zip and unzip it dataset folder using -d option #!unzip Dataset-10k.zip -d dataset import subprocess # Command to unzip the file command = "unzip kgauvin603/rag-10k-analysis/Dataset-10k.zip -d dataset" # Execute the command try: subprocess.run(command, check=True, shell=True) except subprocess.CalledProcessError as e: print(f"An error occurred: {e}") # Provide pdf_folder_location pdf_folder_location = "kgauvin603/rag-10k-analysis/dataset" # Load the directory to pdf_loader pdf_loader = PyPDFDirectoryLoader(pdf_folder_location) # Create text_splitter using recursive splitter text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder( encoding_name='cl100k_base', chunk_size=512, chunk_overlap=16 ) # Create chunks report_chunks = pdf_loader.load_and_split(text_splitter) #Create a Colelction Name collection_name = 'collection' # Create the vector Database vectorstore = Chroma.from_documents( report_chunks, embedding_model, collection_name=collection_name, persist_directory='./collection_db' ) # Persist the DB vectorstore.persist() vectorstore_persisted = Chroma( collection_name=collection_name, persist_directory='./collection_db', embedding_function=embedding_model ) retriever = vectorstore_persisted.as_retriever( search_type='similarity', search_kwargs={'k': 5} ) #Mount the Google Drive #drive.mount('/content/drive') #Copy the persisted database to your drive #command = "!cp -r collection_db /content/drive/MyDrive/" # Execute the command #try: # subprocess.run(command, check=True, shell=True) #except subprocess.CalledProcessError as e: # print(f"An error occurred: {e}") # Get anyscale api key anyscale_api_key = userdata.get('dev-work') # Initialise the client client = OpenAI( base_url="https://api.endpoints.anyscale.com/v1", api_key=anyscale_api_key ) #Provide the model name model_name = 'mlabonne/NeuralHermes-2.5-Mistral-7B' # Initialise the embedding model embedding_model = SentenceTransformerEmbeddings(model_name='thenlper/gte-large') # Load the persisted DB persisted_vectordb_location = './collection_db' #Create a Colelction Name collection_name = 'collection' # Load the persisted DB vectorstore_persisted = Chroma( collection_name=collection_name, persist_directory=persisted_vectordb_location, embedding_function=embedding_model ) # Prepare the logging functionality log_file = Path("logs/") / f"data_{uuid.uuid4()}.json" log_folder = log_file.parent scheduler = CommitScheduler( repo_id="kgauvin603/rag-10k-analysis", repo_type="dataset", folder_path=log_folder, path_in_repo="data", every=2, token=hf_token ) # Define the Q&A system message qna_system_message = """You are an assistant to a financial services firm who answers user queries on annual reports. User input will have the context required by you to answer user questions. This context will begin with the token: ###Context. The context contains references to specific portions of a document relevant to the user query. User questions will begin with the token: ###Question. Please answer only using the context provided in the input. Do not mention anything about the context in your final answer. If the answer is not found in the context, respond "I don't know". """ # Create a message template qna_user_message_template = """ ###Context Here are some documents that are relevant to the question mentioned below. {context} ###Question {question} """ # Define the predict function that runs when 'Submit' is clicked or when an API request is made def predict(user_input, company): filter = "dataset/" + company + "-10-k-2023.pdf" relevant_document_chunks = vectorstore_persisted.similarity_search(user_input, k=5, filter={"source": filter}) # Create context_for_query context_list = [d.page_content for d in relevant_document_chunks] context_for_query = ". ".join(context_list) # Create messages prompt = [ {'role': 'system', 'content': qna_system_message}, {'role': 'user', 'content': qna_user_message_template.format( context=context_for_query, question=user_input )} ] try: response = client.chat.completions.create( model=model_name, messages=prompt, temperature=0 ) prediction = response.choices[0].message.content.strip() except Exception as e: prediction = f'Sorry, I encountered the following error: \n{e}' # Log both the inputs and outputs to a local log file # Ensure that the commit scheduler is locked to avoid parallel access with scheduler.lock: with log_file.open("a") as f: f.write(json.dumps( { 'user_input': user_input, 'retrieved_context': context_for_query, 'model_response': prediction } )) f.write("\n") return prediction # Set up the Gradio UI # Add text box and radio button to the interface # The radio button is used to select the company 10k report in which the context needs to be retrieved. textbox = gr.Textbox(label="User Input") #company = gr.List(label="Select Company", choices=["IBM", "Meta", "aws", "google","msft"]) company = gr.Dropdown(label="Select Company", choices=["IBM", "Meta", "aws", "google","msft"]) # Create the interface # For the inputs parameter of Interface provide [textbox, company] demo = gr.Interface(fn=predict, inputs=[textbox, company], outputs="text") demo.queue() demo.launch(share=True)