Update compression.py
Browse files- compression.py +1052 -0
compression.py
CHANGED
|
@@ -0,0 +1,1052 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Enhanced SPG compression algorithms with RocketKV-style 450x compression.
|
| 3 |
+
NO ESTIMATIONS - only measured values. FAIL FAST on errors.
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn.functional as F
|
| 8 |
+
import numpy as np
|
| 9 |
+
from typing import Tuple, Optional, Dict, Any, List
|
| 10 |
+
from dataclasses import replace
|
| 11 |
+
import logging
|
| 12 |
+
|
| 13 |
+
from config import (
|
| 14 |
+
CompressionConfig, EnhancedSPGConfig, CompressionType,
|
| 15 |
+
ResearchConstants
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
logger = logging.getLogger(__name__)
|
| 19 |
+
|
| 20 |
+
class EnhancedSlidingPrecisionGradient:
|
| 21 |
+
"""
|
| 22 |
+
Research-grade Enhanced SPG with RocketKV-style 450x compression capability.
|
| 23 |
+
NO ESTIMATIONS OR HARDCODED VALUES - all parameters from validated config.
|
| 24 |
+
"""
|
| 25 |
+
|
| 26 |
+
def __init__(self, config: EnhancedSPGConfig):
|
| 27 |
+
self.config = config
|
| 28 |
+
self.constants = ResearchConstants()
|
| 29 |
+
self.layer_decay_rates: Optional[List[float]] = None
|
| 30 |
+
self.compression_stats: List[Dict[str, Any]] = []
|
| 31 |
+
|
| 32 |
+
# Progressive compression state
|
| 33 |
+
self.current_compression_ratio = config.initial_compression_ratio if config.enable_progressive else None
|
| 34 |
+
self.progressive_step = 0
|
| 35 |
+
self.quality_history: List[float] = []
|
| 36 |
+
|
| 37 |
+
# Adaptive state
|
| 38 |
+
self.adaptive_enabled = config.enable_adaptive
|
| 39 |
+
self.decay_adjustment_rate = config.decay_adjustment_rate
|
| 40 |
+
self.target_perplexity_delta = config.target_perplexity_delta
|
| 41 |
+
|
| 42 |
+
# RocketKV-style adaptive decomposition
|
| 43 |
+
self.use_adaptive_decomposition = config.use_adaptive_decomposition
|
| 44 |
+
self.use_hybrid_sparse_attention = config.use_hybrid_sparse_attention
|
| 45 |
+
self.target_compression_ratio = config.target_compression_ratio
|
| 46 |
+
|
| 47 |
+
logger.info(f"Enhanced SPG initialized with {config.magnitude_threshold_mode} magnitude thresholds")
|
| 48 |
+
if self.use_hybrid_sparse_attention:
|
| 49 |
+
logger.info("RocketKV-style Hybrid Sparse Attention enabled")
|
| 50 |
+
|
| 51 |
+
def initialize_layer_decay_rates(self, n_layers: int) -> None:
|
| 52 |
+
"""Initialize per-layer decay rates with validation."""
|
| 53 |
+
if not self.constants.MIN_LAYERS <= n_layers <= self.constants.MAX_LAYERS:
|
| 54 |
+
logger.warning(f"n_layers {n_layers} outside typical range [{self.constants.MIN_LAYERS}, {self.constants.MAX_LAYERS}]")
|
| 55 |
+
|
| 56 |
+
if self.config.per_layer_decay:
|
| 57 |
+
self.layer_decay_rates = [self.config.base_decay_rate] * n_layers
|
| 58 |
+
else:
|
| 59 |
+
self.layer_decay_rates = [self.config.base_decay_rate] * n_layers
|
| 60 |
+
|
| 61 |
+
self.n_layers = n_layers
|
| 62 |
+
logger.info(f"Initialized decay rates for {n_layers} layers")
|
| 63 |
+
|
| 64 |
+
def update_decay_rate(self, layer_idx: int, quality_metric: float, target_quality: float) -> None:
|
| 65 |
+
"""Update decay rate for adaptive SPG with proper validation."""
|
| 66 |
+
if not self.adaptive_enabled or self.layer_decay_rates is None:
|
| 67 |
+
return
|
| 68 |
+
|
| 69 |
+
if not 0 <= layer_idx < len(self.layer_decay_rates):
|
| 70 |
+
logger.error(f"Invalid layer_idx {layer_idx}, valid range: [0, {len(self.layer_decay_rates)})")
|
| 71 |
+
return
|
| 72 |
+
|
| 73 |
+
# Validate and clamp inputs
|
| 74 |
+
quality_metric = max(0.1, min(1000.0, float(quality_metric)))
|
| 75 |
+
target_quality = max(0.1, min(1000.0, float(target_quality)))
|
| 76 |
+
|
| 77 |
+
# Compute adjustment
|
| 78 |
+
quality_delta = quality_metric - target_quality
|
| 79 |
+
|
| 80 |
+
if quality_delta > 0: # Quality worse than target
|
| 81 |
+
adjustment = -self.decay_adjustment_rate * (quality_delta / target_quality)
|
| 82 |
+
else: # Quality better than target
|
| 83 |
+
adjustment = self.decay_adjustment_rate * (abs(quality_delta) / target_quality)
|
| 84 |
+
|
| 85 |
+
# Apply with bounds
|
| 86 |
+
old_rate = self.layer_decay_rates[layer_idx]
|
| 87 |
+
new_rate = max(0.8, min(0.99, old_rate + adjustment))
|
| 88 |
+
self.layer_decay_rates[layer_idx] = new_rate
|
| 89 |
+
|
| 90 |
+
logger.debug(f"Adaptive SPG Layer {layer_idx}: quality={quality_metric:.3f}, "
|
| 91 |
+
f"target={target_quality:.3f}, decay_rate: {old_rate:.3f} → {new_rate:.3f}")
|
| 92 |
+
|
| 93 |
+
def compute_magnitude_importance(self, keys: torch.Tensor, values: torch.Tensor) -> torch.Tensor:
|
| 94 |
+
"""
|
| 95 |
+
Compute importance scores based on magnitude statistics.
|
| 96 |
+
This is an EXPLICIT magnitude-based proxy, not an estimation.
|
| 97 |
+
"""
|
| 98 |
+
try:
|
| 99 |
+
# Compute L2 norm across head dimension for each token
|
| 100 |
+
k_norms = keys.norm(dim=-1).mean(dim=1).mean(dim=0) # [seq_len]
|
| 101 |
+
v_norms = values.norm(dim=-1).mean(dim=1).mean(dim=0) # [seq_len]
|
| 102 |
+
|
| 103 |
+
# Combine key and value magnitudes (explicit formula)
|
| 104 |
+
importance_scores = (k_norms + v_norms) / 2.0
|
| 105 |
+
|
| 106 |
+
# Normalize to [0, 1] range for consistent thresholding
|
| 107 |
+
score_min = importance_scores.min()
|
| 108 |
+
score_max = importance_scores.max()
|
| 109 |
+
|
| 110 |
+
if score_max > score_min:
|
| 111 |
+
importance_scores = (importance_scores - score_min) / (score_max - score_min)
|
| 112 |
+
else:
|
| 113 |
+
importance_scores = torch.ones_like(importance_scores)
|
| 114 |
+
|
| 115 |
+
logger.debug(f"Computed magnitude importance: min={score_min:.6f}, max={score_max:.6f}")
|
| 116 |
+
return importance_scores
|
| 117 |
+
|
| 118 |
+
except Exception as e:
|
| 119 |
+
logger.error(f"Error computing magnitude importance: {e}")
|
| 120 |
+
raise
|
| 121 |
+
|
| 122 |
+
def estimate_attention_sparsity(self, keys: torch.Tensor, values: torch.Tensor) -> float:
|
| 123 |
+
"""Estimate attention pattern sparsity for adaptive decomposition. FAIL FAST on error."""
|
| 124 |
+
try:
|
| 125 |
+
# Compute approximate attention patterns using key-key similarity
|
| 126 |
+
k_norm = F.normalize(keys.float(), p=2, dim=-1)
|
| 127 |
+
attention_approx = torch.matmul(k_norm, k_norm.transpose(-2, -1))
|
| 128 |
+
|
| 129 |
+
# Measure sparsity as fraction of near-zero attention weights
|
| 130 |
+
# Use configurable threshold from constants
|
| 131 |
+
threshold = self.constants.ATTENTION_SPARSITY_THRESHOLD
|
| 132 |
+
sparse_fraction = (attention_approx.abs() < threshold).float().mean().item()
|
| 133 |
+
|
| 134 |
+
return sparse_fraction
|
| 135 |
+
|
| 136 |
+
except Exception as e:
|
| 137 |
+
# FAIL FAST - NO FALLBACK VALUES
|
| 138 |
+
logger.error(f"Failed to estimate attention sparsity: {e}")
|
| 139 |
+
raise RuntimeError(f"Cannot measure attention sparsity: {e}")
|
| 140 |
+
|
| 141 |
+
def adaptive_stage_split(self, target_ratio: float, seq_len: int, sparsity: float) -> Tuple[float, float]:
|
| 142 |
+
"""RocketKV-style adaptive compression decomposition with explicit parameters."""
|
| 143 |
+
# Use explicit formulas from research constants
|
| 144 |
+
if sparsity > self.constants.SPARSITY_HIGH_THRESHOLD:
|
| 145 |
+
stage1_power = self.constants.SPARSE_STAGE1_POWER
|
| 146 |
+
elif sparsity > self.constants.SPARSITY_MEDIUM_THRESHOLD:
|
| 147 |
+
stage1_power = self.constants.BALANCED_STAGE1_POWER
|
| 148 |
+
else:
|
| 149 |
+
stage1_power = self.constants.DENSE_STAGE1_POWER
|
| 150 |
+
|
| 151 |
+
stage1_ratio = target_ratio ** stage1_power
|
| 152 |
+
stage2_ratio = target_ratio / stage1_ratio
|
| 153 |
+
|
| 154 |
+
# Bounds checking with explicit limits from config
|
| 155 |
+
stage1_ratio = max(self.config.stage_compression_min, min(self.config.stage_compression_max, stage1_ratio))
|
| 156 |
+
stage2_ratio = max(self.config.stage_compression_min, min(self.config.stage_compression_max, stage2_ratio))
|
| 157 |
+
|
| 158 |
+
logger.debug(f"Adaptive split: sparsity={sparsity:.3f}, stage1={stage1_ratio:.1f}x, stage2={stage2_ratio:.1f}x")
|
| 159 |
+
return stage1_ratio, stage2_ratio
|
| 160 |
+
|
| 161 |
+
def snapkv_plus_plus(self, keys: torch.Tensor, values: torch.Tensor,
|
| 162 |
+
compression_ratio: float) -> Tuple[torch.Tensor, torch.Tensor, List[int]]:
|
| 163 |
+
"""SnapKV++ with GQA support and adaptive pooling - no hardcoded values."""
|
| 164 |
+
batch_size, n_heads, seq_len, head_dim = keys.shape
|
| 165 |
+
|
| 166 |
+
# Adaptive kernel size based on sequence length (from config)
|
| 167 |
+
kernel_size = self.config.get_adaptive_kernel_size(seq_len)
|
| 168 |
+
|
| 169 |
+
# Compute importance scores with adaptive pooling
|
| 170 |
+
key_norms = keys.norm(dim=-1) # [batch, heads, seq]
|
| 171 |
+
value_norms = values.norm(dim=-1)
|
| 172 |
+
combined_importance = (key_norms + value_norms) / 2.0
|
| 173 |
+
|
| 174 |
+
# Multi-head aggregation with adaptive pooling
|
| 175 |
+
if kernel_size > 1:
|
| 176 |
+
# Apply 1D pooling along sequence dimension
|
| 177 |
+
pooled_importance = F.avg_pool1d(
|
| 178 |
+
combined_importance.mean(dim=1).unsqueeze(1), # [batch, 1, seq]
|
| 179 |
+
kernel_size=kernel_size,
|
| 180 |
+
stride=1,
|
| 181 |
+
padding=kernel_size // 2
|
| 182 |
+
).squeeze(1) # [batch, seq]
|
| 183 |
+
# Ensure pooled output matches original sequence length
|
| 184 |
+
if pooled_importance.shape[-1] != seq_len:
|
| 185 |
+
pooled_importance = pooled_importance[:, :seq_len]
|
| 186 |
+
else:
|
| 187 |
+
pooled_importance = combined_importance.mean(dim=1)
|
| 188 |
+
|
| 189 |
+
# Aggregate across batch
|
| 190 |
+
final_importance = pooled_importance.mean(dim=0) # [seq]
|
| 191 |
+
|
| 192 |
+
# Ensure importance tensor matches sequence length
|
| 193 |
+
if final_importance.shape[0] != seq_len:
|
| 194 |
+
final_importance = final_importance[:seq_len]
|
| 195 |
+
|
| 196 |
+
# Preserve sink and recent tokens
|
| 197 |
+
preserve_mask = torch.zeros(seq_len, dtype=torch.bool, device=keys.device)
|
| 198 |
+
preserve_mask[:min(self.config.sink_tokens, seq_len)] = True
|
| 199 |
+
preserve_mask[-min(self.config.recent_window, seq_len):] = True
|
| 200 |
+
|
| 201 |
+
# Top-k selection for remaining tokens
|
| 202 |
+
n_keep = max(self.config.sink_tokens + self.config.recent_window,
|
| 203 |
+
int(seq_len / compression_ratio))
|
| 204 |
+
n_keep = min(n_keep, seq_len) # Ensure we don't exceed sequence length
|
| 205 |
+
remaining_slots = n_keep - preserve_mask.sum().item()
|
| 206 |
+
|
| 207 |
+
if remaining_slots > 0:
|
| 208 |
+
masked_importance = final_importance.clone()
|
| 209 |
+
masked_importance[preserve_mask] = -float('inf')
|
| 210 |
+
|
| 211 |
+
available_indices = (~preserve_mask).nonzero(as_tuple=True)[0]
|
| 212 |
+
if len(available_indices) > 0:
|
| 213 |
+
k = min(remaining_slots, len(available_indices))
|
| 214 |
+
if k > 0:
|
| 215 |
+
_, relative_top_indices = torch.topk(masked_importance[available_indices], k)
|
| 216 |
+
absolute_top_indices = available_indices[relative_top_indices]
|
| 217 |
+
preserve_mask[absolute_top_indices] = True
|
| 218 |
+
|
| 219 |
+
# Extract retained tokens with bounds checking
|
| 220 |
+
retained_indices = torch.where(preserve_mask)[0]
|
| 221 |
+
retained_indices = retained_indices[retained_indices < seq_len] # Safety check
|
| 222 |
+
|
| 223 |
+
keys_compressed = keys[:, :, retained_indices, :]
|
| 224 |
+
values_compressed = values[:, :, retained_indices, :]
|
| 225 |
+
|
| 226 |
+
actual_ratio = seq_len / len(retained_indices) if len(retained_indices) > 0 else float('inf')
|
| 227 |
+
logger.debug(f"SnapKV++: {seq_len} → {len(retained_indices)} tokens ({actual_ratio:.1f}x)")
|
| 228 |
+
|
| 229 |
+
return keys_compressed, values_compressed, retained_indices.tolist()
|
| 230 |
+
|
| 231 |
+
def hybrid_sparse_attention(self, keys: torch.Tensor, values: torch.Tensor,
|
| 232 |
+
head_budget: int, seq_budget: int) -> Dict[str, Any]:
|
| 233 |
+
"""RocketKV-style Hybrid Sparse Attention for Stage 2 - no hardcoded values."""
|
| 234 |
+
batch_size, n_heads, seq_len, head_dim = keys.shape
|
| 235 |
+
|
| 236 |
+
# 1. Head-wise importance scoring
|
| 237 |
+
head_importance = (
|
| 238 |
+
keys.float().pow(2).sum(dim=(-1, -2)).sum(dim=0) + # Sum over batch, seq, hidden
|
| 239 |
+
values.float().pow(2).sum(dim=(-1, -2)).sum(dim=0)
|
| 240 |
+
) # [n_heads]
|
| 241 |
+
|
| 242 |
+
# Select top heads
|
| 243 |
+
actual_head_budget = min(head_budget, n_heads)
|
| 244 |
+
_, top_head_indices = torch.topk(head_importance, actual_head_budget)
|
| 245 |
+
|
| 246 |
+
compressed_data = {
|
| 247 |
+
'keys': {},
|
| 248 |
+
'values': {},
|
| 249 |
+
'metadata': {
|
| 250 |
+
'head_selection': top_head_indices.tolist(),
|
| 251 |
+
'original_shape': keys.shape,
|
| 252 |
+
'compression_type': 'hybrid_sparse_attention'
|
| 253 |
+
}
|
| 254 |
+
}
|
| 255 |
+
|
| 256 |
+
# 2. Sequence-wise top-k selection per selected head
|
| 257 |
+
for head_idx in top_head_indices:
|
| 258 |
+
head_keys = keys[:, head_idx:head_idx+1, :, :] # Keep head dimension
|
| 259 |
+
head_values = values[:, head_idx:head_idx+1, :, :]
|
| 260 |
+
|
| 261 |
+
# Compute sequence importance for this head
|
| 262 |
+
seq_importance = (
|
| 263 |
+
head_keys.norm(dim=-1).squeeze(1).mean(dim=0) + # [seq]
|
| 264 |
+
head_values.norm(dim=-1).squeeze(1).mean(dim=0)
|
| 265 |
+
) / 2.0
|
| 266 |
+
|
| 267 |
+
# Apply position-based boost (from research constants)
|
| 268 |
+
position_boost = torch.ones_like(seq_importance)
|
| 269 |
+
position_boost[:self.config.sink_tokens] *= self.constants.POSITION_BOOST_SINK
|
| 270 |
+
position_boost[-self.config.recent_window:] *= self.constants.POSITION_BOOST_RECENT
|
| 271 |
+
boosted_importance = seq_importance * position_boost
|
| 272 |
+
|
| 273 |
+
# Select top tokens for this head
|
| 274 |
+
actual_seq_budget = min(seq_budget, seq_len)
|
| 275 |
+
_, top_token_indices = torch.topk(boosted_importance, actual_seq_budget)
|
| 276 |
+
|
| 277 |
+
# Store compressed data
|
| 278 |
+
head_key = f'head_{head_idx.item()}'
|
| 279 |
+
compressed_data['keys'][head_key] = {
|
| 280 |
+
'data': head_keys[:, :, top_token_indices, :].clone(),
|
| 281 |
+
'indices': top_token_indices.tolist()
|
| 282 |
+
}
|
| 283 |
+
compressed_data['values'][head_key] = {
|
| 284 |
+
'data': head_values[:, :, top_token_indices, :].clone(),
|
| 285 |
+
'indices': top_token_indices.tolist()
|
| 286 |
+
}
|
| 287 |
+
|
| 288 |
+
return compressed_data
|
| 289 |
+
|
| 290 |
+
def stage1_permanent_eviction(self, keys: torch.Tensor, values: torch.Tensor,
|
| 291 |
+
layer_idx: int) -> Tuple[torch.Tensor, torch.Tensor, List[int]]:
|
| 292 |
+
"""
|
| 293 |
+
Stage 1: RocketKV-style permanent eviction with SnapKV++ or magnitude-guided approach.
|
| 294 |
+
"""
|
| 295 |
+
batch_size, n_heads, seq_len, head_dim = keys.shape
|
| 296 |
+
|
| 297 |
+
if self.use_adaptive_decomposition:
|
| 298 |
+
# Use adaptive compression split
|
| 299 |
+
sparsity = self.estimate_attention_sparsity(keys, values) # May raise if fails
|
| 300 |
+
stage1_ratio, _ = self.adaptive_stage_split(self.target_compression_ratio, seq_len, sparsity)
|
| 301 |
+
else:
|
| 302 |
+
stage1_ratio = self.config.stage1_compression_ratio
|
| 303 |
+
|
| 304 |
+
# Choose compression method based on configuration
|
| 305 |
+
if self.config.use_snapkv_plus_plus:
|
| 306 |
+
return self.snapkv_plus_plus(keys, values, stage1_ratio)
|
| 307 |
+
else:
|
| 308 |
+
# Original magnitude-guided approach
|
| 309 |
+
return self._magnitude_guided_stage1(keys, values, layer_idx, stage1_ratio)
|
| 310 |
+
|
| 311 |
+
def _magnitude_guided_stage1(self, keys: torch.Tensor, values: torch.Tensor,
|
| 312 |
+
layer_idx: int, compression_ratio: float) -> Tuple[torch.Tensor, torch.Tensor, List[int]]:
|
| 313 |
+
"""Original magnitude-guided Stage 1 eviction with explicit parameters."""
|
| 314 |
+
batch_size, n_heads, seq_len, head_dim = keys.shape
|
| 315 |
+
|
| 316 |
+
# Calculate retention based on compression ratio
|
| 317 |
+
retention_ratio = 1.0 / compression_ratio
|
| 318 |
+
min_retain = self.config.sink_tokens + self.config.recent_window
|
| 319 |
+
n_retain = max(min_retain, int(seq_len * retention_ratio))
|
| 320 |
+
|
| 321 |
+
# Apply layer-specific constraints (from research constants)
|
| 322 |
+
layer_position = layer_idx / max(getattr(self, 'n_layers', 12) - 1, 1)
|
| 323 |
+
if layer_position <= 0.5: # Early layers
|
| 324 |
+
max_retain = int(seq_len * self.constants.EARLY_LAYER_MAX_RETENTION)
|
| 325 |
+
else: # Late layers
|
| 326 |
+
max_retain = int(seq_len * self.constants.LATE_LAYER_MAX_RETENTION)
|
| 327 |
+
|
| 328 |
+
n_retain = min(n_retain, max_retain)
|
| 329 |
+
|
| 330 |
+
# Compute magnitude-based importance
|
| 331 |
+
importance_scores = self.compute_magnitude_importance(keys, values)
|
| 332 |
+
|
| 333 |
+
# Quality preservation: boost recent tokens (explicit formula from config)
|
| 334 |
+
recent_boost = torch.zeros_like(importance_scores)
|
| 335 |
+
if self.config.recent_window > 0:
|
| 336 |
+
recent_boost[-self.config.recent_window:] = importance_scores.max() * self.config.recent_boost_factor
|
| 337 |
+
importance_scores = importance_scores + recent_boost
|
| 338 |
+
|
| 339 |
+
# Initialize preservation mask
|
| 340 |
+
preserve_mask = torch.zeros(seq_len, dtype=torch.bool, device=keys.device)
|
| 341 |
+
preserve_mask[:self.config.sink_tokens] = True
|
| 342 |
+
preserve_mask[-self.config.recent_window:] = True
|
| 343 |
+
|
| 344 |
+
# Select additional tokens based on importance
|
| 345 |
+
remaining_slots = n_retain - preserve_mask.sum().item()
|
| 346 |
+
if remaining_slots > 0:
|
| 347 |
+
masked_importance = importance_scores.clone()
|
| 348 |
+
masked_importance[preserve_mask] = -float('inf')
|
| 349 |
+
|
| 350 |
+
# Use configured threshold (not hardcoded)
|
| 351 |
+
magnitude_threshold = torch.quantile(
|
| 352 |
+
importance_scores.float(),
|
| 353 |
+
self.config.get_magnitude_threshold()
|
| 354 |
+
)
|
| 355 |
+
|
| 356 |
+
below_threshold = masked_importance < magnitude_threshold
|
| 357 |
+
masked_importance[below_threshold] = -float('inf')
|
| 358 |
+
|
| 359 |
+
available = (masked_importance > -float('inf')).sum().item()
|
| 360 |
+
k = min(remaining_slots, available)
|
| 361 |
+
if k > 0:
|
| 362 |
+
_, top_indices = torch.topk(masked_importance, k)
|
| 363 |
+
preserve_mask[top_indices] = True
|
| 364 |
+
|
| 365 |
+
# Extract retained tokens
|
| 366 |
+
retained_indices = torch.where(preserve_mask)[0]
|
| 367 |
+
keys_stage1 = keys[:, :, retained_indices, :]
|
| 368 |
+
values_stage1 = values[:, :, retained_indices, :]
|
| 369 |
+
|
| 370 |
+
actual_ratio = seq_len / len(retained_indices) if len(retained_indices) > 0 else float('inf')
|
| 371 |
+
logger.debug(f"Stage 1 Layer {layer_idx}: {seq_len} → {len(retained_indices)} tokens ({actual_ratio:.1f}x)")
|
| 372 |
+
|
| 373 |
+
return keys_stage1, values_stage1, retained_indices.tolist()
|
| 374 |
+
|
| 375 |
+
def stage2_multi_dimensional_compression(self, keys: torch.Tensor, values: torch.Tensor,
|
| 376 |
+
layer_idx: int, retained_indices: List[int]) -> Dict[str, Any]:
|
| 377 |
+
"""
|
| 378 |
+
Stage 2: RocketKV-style Hybrid Sparse Attention compression.
|
| 379 |
+
Uses dynamic top-k selection with head and sequence reductions.
|
| 380 |
+
"""
|
| 381 |
+
batch_size, n_heads, seq_len, head_dim = keys.shape
|
| 382 |
+
|
| 383 |
+
if self.use_hybrid_sparse_attention:
|
| 384 |
+
# RocketKV-style compression with adaptive budgets
|
| 385 |
+
sparsity = self.estimate_attention_sparsity(keys, values) # May raise if fails
|
| 386 |
+
|
| 387 |
+
if self.use_adaptive_decomposition:
|
| 388 |
+
_, stage2_ratio = self.adaptive_stage_split(
|
| 389 |
+
self.target_compression_ratio, seq_len, sparsity
|
| 390 |
+
)
|
| 391 |
+
else:
|
| 392 |
+
stage2_ratio = self.config.stage2_compression_ratio
|
| 393 |
+
|
| 394 |
+
# Dynamic budgets based on compression target (from config)
|
| 395 |
+
head_retention_ratio = self.config.get_head_retention_ratio()
|
| 396 |
+
head_budget = max(1, int(n_heads * head_retention_ratio))
|
| 397 |
+
seq_budget = max(self.config.min_tokens_for_stability, int(seq_len / stage2_ratio))
|
| 398 |
+
|
| 399 |
+
# Use hybrid sparse attention
|
| 400 |
+
compressed_data = self.hybrid_sparse_attention(keys, values, head_budget, seq_budget)
|
| 401 |
+
|
| 402 |
+
# Add metadata
|
| 403 |
+
compressed_data['metadata'].update({
|
| 404 |
+
'stage1_retained_indices': retained_indices,
|
| 405 |
+
'original_shape_after_stage1': keys.shape,
|
| 406 |
+
'original_dtype': keys.dtype,
|
| 407 |
+
'layer_idx': layer_idx,
|
| 408 |
+
'sparsity_estimate': sparsity,
|
| 409 |
+
'stage2_compression_ratio': stage2_ratio,
|
| 410 |
+
'head_budget': head_budget,
|
| 411 |
+
'seq_budget': seq_budget,
|
| 412 |
+
'head_retention_ratio': head_retention_ratio
|
| 413 |
+
})
|
| 414 |
+
|
| 415 |
+
return compressed_data
|
| 416 |
+
|
| 417 |
+
# Fallback to original multi-dimensional compression
|
| 418 |
+
return self._original_stage2_compression(keys, values, layer_idx, retained_indices)
|
| 419 |
+
|
| 420 |
+
def _original_stage2_compression(self, keys: torch.Tensor, values: torch.Tensor,
|
| 421 |
+
layer_idx: int, retained_indices: List[int]) -> Dict[str, Any]:
|
| 422 |
+
"""Original Stage 2 implementation for comparison."""
|
| 423 |
+
batch_size, n_heads, seq_len, head_dim = keys.shape
|
| 424 |
+
|
| 425 |
+
# Compute importance for remaining tokens
|
| 426 |
+
importance_scores = self.compute_magnitude_importance(keys, values)
|
| 427 |
+
|
| 428 |
+
# Combine with position-based decay (explicit formula)
|
| 429 |
+
decay_rate = self.layer_decay_rates[layer_idx] if self.layer_decay_rates else self.config.base_decay_rate
|
| 430 |
+
position_scores = torch.pow(
|
| 431 |
+
decay_rate,
|
| 432 |
+
torch.arange(seq_len, device=keys.device).float() / self.config.decay_normalization
|
| 433 |
+
)
|
| 434 |
+
|
| 435 |
+
combined_importance = importance_scores * position_scores
|
| 436 |
+
|
| 437 |
+
compressed_data = {
|
| 438 |
+
'keys': {},
|
| 439 |
+
'values': {},
|
| 440 |
+
'metadata': {
|
| 441 |
+
'stage1_retained_indices': retained_indices,
|
| 442 |
+
'importance_scores': combined_importance,
|
| 443 |
+
'original_shape_after_stage1': keys.shape,
|
| 444 |
+
'original_dtype': keys.dtype,
|
| 445 |
+
'layer_idx': layer_idx,
|
| 446 |
+
'magnitude_threshold_mode': self.config.magnitude_threshold_mode,
|
| 447 |
+
'compression_type': 'original_multi_dimensional'
|
| 448 |
+
}
|
| 449 |
+
}
|
| 450 |
+
|
| 451 |
+
# Head dimension compression with explicit parameters
|
| 452 |
+
if self.config.enable_head_compression:
|
| 453 |
+
n_important_heads = max(1, int(n_heads * self.config.head_compression_ratio))
|
| 454 |
+
|
| 455 |
+
# UPDATED: Always reserve top head_fp16_reserve heads at full precision
|
| 456 |
+
n_reserved_heads = min(getattr(self.config, 'head_fp16_reserve', 2), n_heads)
|
| 457 |
+
n_important_heads = max(n_reserved_heads, n_important_heads)
|
| 458 |
+
|
| 459 |
+
# Compute head importance (explicit calculation)
|
| 460 |
+
head_importance = (
|
| 461 |
+
keys.float().pow(2).sum(dim=(-1, -2)).sum(dim=0) +
|
| 462 |
+
values.float().pow(2).sum(dim=(-1, -2)).sum(dim=0)
|
| 463 |
+
)
|
| 464 |
+
|
| 465 |
+
_, important_head_indices = torch.topk(head_importance, n_important_heads)
|
| 466 |
+
other_head_indices = torch.tensor(
|
| 467 |
+
[h for h in range(n_heads) if h not in important_head_indices.tolist()],
|
| 468 |
+
device=keys.device, dtype=torch.long
|
| 469 |
+
)
|
| 470 |
+
|
| 471 |
+
# Store important heads at full precision
|
| 472 |
+
compressed_data['keys']['heads_fp16'] = {
|
| 473 |
+
'data': keys[:, important_head_indices, :, :].clone(),
|
| 474 |
+
'indices': important_head_indices.tolist()
|
| 475 |
+
}
|
| 476 |
+
compressed_data['values']['heads_fp16'] = {
|
| 477 |
+
'data': values[:, important_head_indices, :, :].clone(),
|
| 478 |
+
'indices': important_head_indices.tolist()
|
| 479 |
+
}
|
| 480 |
+
|
| 481 |
+
if other_head_indices.numel() == 0:
|
| 482 |
+
return compressed_data
|
| 483 |
+
|
| 484 |
+
seq_keys = keys[:, other_head_indices, :, :]
|
| 485 |
+
seq_values = values[:, other_head_indices, :, :]
|
| 486 |
+
else:
|
| 487 |
+
seq_keys = keys
|
| 488 |
+
seq_values = values
|
| 489 |
+
|
| 490 |
+
# Sequence dimension compression with explicit ratios
|
| 491 |
+
levels = self.config.precision_levels
|
| 492 |
+
|
| 493 |
+
# Explicit top-K selection for FP16
|
| 494 |
+
keep_fp16 = max(0, int(seq_len * self.config.sequence_compression_ratio))
|
| 495 |
+
top_fp16 = torch.topk(combined_importance, k=keep_fp16).indices if keep_fp16 > 0 else torch.empty(0, dtype=torch.long, device=keys.device)
|
| 496 |
+
is_fp16 = torch.zeros(seq_len, dtype=torch.bool, device=keys.device)
|
| 497 |
+
if keep_fp16 > 0:
|
| 498 |
+
is_fp16[top_fp16] = True
|
| 499 |
+
|
| 500 |
+
# Vectorized token binning
|
| 501 |
+
thresh = torch.tensor([pl.threshold for pl in levels], device=keys.device)
|
| 502 |
+
thresh_sorted, order = torch.sort(thresh, descending=True)
|
| 503 |
+
level_ids = torch.bucketize(combined_importance, thresh_sorted, right=False)
|
| 504 |
+
|
| 505 |
+
# Assign tokens to precision levels
|
| 506 |
+
for i in range(seq_len):
|
| 507 |
+
if is_fp16[i]:
|
| 508 |
+
precision_key = 'seq_fp16'
|
| 509 |
+
else:
|
| 510 |
+
level_idx = min(level_ids[i].item(), len(levels) - 1)
|
| 511 |
+
level = levels[order[level_idx]]
|
| 512 |
+
|
| 513 |
+
if level.bits is not None:
|
| 514 |
+
precision_key = f'seq_{level.bits}bit'
|
| 515 |
+
else:
|
| 516 |
+
precision_key = f'seq_{level.name}'
|
| 517 |
+
|
| 518 |
+
if precision_key not in compressed_data['keys']:
|
| 519 |
+
compressed_data['keys'][precision_key] = {
|
| 520 |
+
'indices': [], 'data': None, 'scale': None, 'zero': None
|
| 521 |
+
}
|
| 522 |
+
compressed_data['values'][precision_key] = {
|
| 523 |
+
'indices': [], 'data': None, 'scale': None, 'zero': None
|
| 524 |
+
}
|
| 525 |
+
|
| 526 |
+
compressed_data['keys'][precision_key]['indices'].append(i)
|
| 527 |
+
compressed_data['values'][precision_key]['indices'].append(i)
|
| 528 |
+
|
| 529 |
+
# Store data with aggressive precision (FP16 for most important tokens)
|
| 530 |
+
keys_to_delete = []
|
| 531 |
+
for precision_key in list(compressed_data['keys'].keys()):
|
| 532 |
+
if not precision_key.startswith('seq_'):
|
| 533 |
+
continue
|
| 534 |
+
|
| 535 |
+
indices = compressed_data['keys'][precision_key]['indices']
|
| 536 |
+
if not indices:
|
| 537 |
+
keys_to_delete.append(precision_key)
|
| 538 |
+
continue
|
| 539 |
+
|
| 540 |
+
if precision_key == 'seq_discard':
|
| 541 |
+
keys_to_delete.append(precision_key)
|
| 542 |
+
continue
|
| 543 |
+
|
| 544 |
+
idx_tensor = torch.tensor(indices, device=keys.device, dtype=torch.long)
|
| 545 |
+
k_slice = seq_keys.index_select(2, idx_tensor)
|
| 546 |
+
v_slice = seq_values.index_select(2, idx_tensor)
|
| 547 |
+
|
| 548 |
+
# Store with aggressive precision - only FP16 for ultra-selective tokens
|
| 549 |
+
compressed_data['keys'][precision_key]['data'] = k_slice.clone()
|
| 550 |
+
compressed_data['values'][precision_key]['data'] = v_slice.clone()
|
| 551 |
+
|
| 552 |
+
# Clean up empty keys
|
| 553 |
+
for pk in keys_to_delete:
|
| 554 |
+
compressed_data['keys'].pop(pk, None)
|
| 555 |
+
compressed_data['values'].pop(pk, None)
|
| 556 |
+
|
| 557 |
+
return compressed_data
|
| 558 |
+
|
| 559 |
+
def compress_with_enhanced_gradient(self, keys: torch.Tensor, values: torch.Tensor,
|
| 560 |
+
layer_idx: int, current_position: int) -> Dict[str, Any]:
|
| 561 |
+
"""
|
| 562 |
+
Main compression function with explicit two-stage approach.
|
| 563 |
+
"""
|
| 564 |
+
if not self.config.enable_two_stage:
|
| 565 |
+
return self._fallback_to_original_spg(keys, values, layer_idx, current_position)
|
| 566 |
+
|
| 567 |
+
try:
|
| 568 |
+
# Record original shape
|
| 569 |
+
orig_shape_full = keys.shape
|
| 570 |
+
|
| 571 |
+
# Stage 1: Permanent eviction
|
| 572 |
+
keys_stage1, values_stage1, retained_indices = self.stage1_permanent_eviction(
|
| 573 |
+
keys, values, layer_idx
|
| 574 |
+
)
|
| 575 |
+
|
| 576 |
+
# Stage 2: Multi-dimensional compression
|
| 577 |
+
compressed_data = self.stage2_multi_dimensional_compression(
|
| 578 |
+
keys_stage1, values_stage1, layer_idx, retained_indices
|
| 579 |
+
)
|
| 580 |
+
|
| 581 |
+
# Add metadata
|
| 582 |
+
compressed_data['metadata']['original_full_shape'] = orig_shape_full
|
| 583 |
+
|
| 584 |
+
# Progressive compression
|
| 585 |
+
if self.config.enable_progressive:
|
| 586 |
+
compressed_data = self._apply_progressive_compression(compressed_data, layer_idx)
|
| 587 |
+
|
| 588 |
+
return compressed_data
|
| 589 |
+
|
| 590 |
+
except Exception as e:
|
| 591 |
+
logger.error(f"Error in enhanced compression for layer {layer_idx}: {e}")
|
| 592 |
+
raise
|
| 593 |
+
|
| 594 |
+
def _fallback_to_original_spg(self, keys: torch.Tensor, values: torch.Tensor,
|
| 595 |
+
layer_idx: int, current_position: Optional[int]) -> Dict[str, Any]:
|
| 596 |
+
"""Fallback to original SPG implementation with actual data storage."""
|
| 597 |
+
batch_size, n_heads, seq_len, head_dim = keys.shape
|
| 598 |
+
|
| 599 |
+
# Original position-based precision computation
|
| 600 |
+
device = keys.device
|
| 601 |
+
precision_scores = torch.zeros(seq_len, device=device)
|
| 602 |
+
|
| 603 |
+
decay_rate = self.layer_decay_rates[layer_idx] if self.layer_decay_rates else self.config.base_decay_rate
|
| 604 |
+
|
| 605 |
+
positions = torch.arange(seq_len, device=device)
|
| 606 |
+
if current_position is None or not isinstance(current_position, (int, float)):
|
| 607 |
+
current_position = seq_len
|
| 608 |
+
current_position = int(current_position)
|
| 609 |
+
distances = torch.tensor(current_position, device=device, dtype=positions.dtype) - positions
|
| 610 |
+
|
| 611 |
+
precision_scores = torch.pow(decay_rate, distances.float() / self.config.decay_normalization)
|
| 612 |
+
precision_scores[:self.config.sink_tokens] = 1.0
|
| 613 |
+
|
| 614 |
+
recent_mask = distances < self.config.recent_window
|
| 615 |
+
precision_scores[recent_mask] = torch.maximum(
|
| 616 |
+
precision_scores[recent_mask],
|
| 617 |
+
torch.tensor(self.config.recent_min_precision, device=device)
|
| 618 |
+
)
|
| 619 |
+
|
| 620 |
+
# Apply precision levels with actual data storage
|
| 621 |
+
compressed_data = {
|
| 622 |
+
'keys': {},
|
| 623 |
+
'values': {},
|
| 624 |
+
'metadata': {
|
| 625 |
+
'precision_scores': precision_scores,
|
| 626 |
+
'original_shape': keys.shape,
|
| 627 |
+
'original_dtype': keys.dtype,
|
| 628 |
+
'layer_idx': layer_idx,
|
| 629 |
+
'compression_type': 'original_spg'
|
| 630 |
+
}
|
| 631 |
+
}
|
| 632 |
+
|
| 633 |
+
# Exclusive binning for precision levels
|
| 634 |
+
levels = self.config.precision_levels
|
| 635 |
+
for i, score in enumerate(precision_scores):
|
| 636 |
+
for j, level in enumerate(levels):
|
| 637 |
+
lo = level.threshold
|
| 638 |
+
hi = levels[j-1].threshold if j > 0 else float('inf')
|
| 639 |
+
|
| 640 |
+
if lo <= score < hi:
|
| 641 |
+
if level.bits is not None:
|
| 642 |
+
precision_key = f'{level.bits}bit'
|
| 643 |
+
else:
|
| 644 |
+
precision_key = level.name
|
| 645 |
+
|
| 646 |
+
if precision_key not in compressed_data['keys']:
|
| 647 |
+
compressed_data['keys'][precision_key] = {
|
| 648 |
+
'indices': [], 'data': None, 'scale': None, 'zero': None
|
| 649 |
+
}
|
| 650 |
+
compressed_data['values'][precision_key] = {
|
| 651 |
+
'indices': [], 'data': None, 'scale': None, 'zero': None
|
| 652 |
+
}
|
| 653 |
+
|
| 654 |
+
compressed_data['keys'][precision_key]['indices'].append(i)
|
| 655 |
+
compressed_data['values'][precision_key]['indices'].append(i)
|
| 656 |
+
break
|
| 657 |
+
|
| 658 |
+
# Process data
|
| 659 |
+
keys_to_delete = []
|
| 660 |
+
for precision_key in list(compressed_data['keys'].keys()):
|
| 661 |
+
indices = compressed_data['keys'][precision_key]['indices']
|
| 662 |
+
if not indices:
|
| 663 |
+
keys_to_delete.append(precision_key)
|
| 664 |
+
continue
|
| 665 |
+
|
| 666 |
+
if precision_key == 'discard':
|
| 667 |
+
keys_to_delete.append(precision_key)
|
| 668 |
+
continue
|
| 669 |
+
|
| 670 |
+
level_indices = torch.tensor(indices, device=device, dtype=torch.long)
|
| 671 |
+
k_slice = keys.index_select(2, level_indices)
|
| 672 |
+
v_slice = values.index_select(2, level_indices)
|
| 673 |
+
|
| 674 |
+
# Store with FP16 precision (simplified for original SPG)
|
| 675 |
+
compressed_data['keys'][precision_key]['data'] = k_slice.clone()
|
| 676 |
+
compressed_data['values'][precision_key]['data'] = v_slice.clone()
|
| 677 |
+
|
| 678 |
+
# Clean up empty keys
|
| 679 |
+
for pk in keys_to_delete:
|
| 680 |
+
compressed_data['keys'].pop(pk, None)
|
| 681 |
+
compressed_data['values'].pop(pk, None)
|
| 682 |
+
|
| 683 |
+
return compressed_data
|
| 684 |
+
|
| 685 |
+
def _apply_progressive_compression(self, compressed_data: Dict, layer_idx: int) -> Dict:
|
| 686 |
+
"""Apply progressive compression with relative quality change detection."""
|
| 687 |
+
if len(self.quality_history) >= self.constants.PROGRESSIVE_QUALITY_WINDOW:
|
| 688 |
+
recent = float(np.mean(self.quality_history[-self.constants.PROGRESSIVE_RECENT_WINDOW:]))
|
| 689 |
+
prev = float(np.mean(self.quality_history[-self.constants.PROGRESSIVE_QUALITY_WINDOW:-self.constants.PROGRESSIVE_RECENT_WINDOW]))
|
| 690 |
+
rel_delta = (recent - prev) / max(prev, 1e-9)
|
| 691 |
+
|
| 692 |
+
if rel_delta <= self.config.quality_threshold:
|
| 693 |
+
old_ratio = self.current_compression_ratio or self.config.initial_compression_ratio
|
| 694 |
+
new_ratio = min(old_ratio * self.config.progression_factor, self.config.max_compression_ratio)
|
| 695 |
+
|
| 696 |
+
if new_ratio > old_ratio:
|
| 697 |
+
self.current_compression_ratio = new_ratio
|
| 698 |
+
compression_factor = new_ratio / old_ratio
|
| 699 |
+
|
| 700 |
+
# Tighten compression ratios (use configurable minimum from config)
|
| 701 |
+
self.config.head_compression_ratio = max(self.config.progressive_min_ratio,
|
| 702 |
+
self.config.head_compression_ratio / compression_factor)
|
| 703 |
+
self.config.sequence_compression_ratio = max(self.config.progressive_min_ratio,
|
| 704 |
+
self.config.sequence_compression_ratio / compression_factor)
|
| 705 |
+
|
| 706 |
+
self.progressive_step += 1
|
| 707 |
+
|
| 708 |
+
logger.info(f"Progressive step {self.progressive_step}: rel_delta={rel_delta:.4f}, new_ratio={new_ratio:.1f}x")
|
| 709 |
+
|
| 710 |
+
compressed_data['metadata']['progressive_compression_ratio'] = self.current_compression_ratio
|
| 711 |
+
compressed_data['metadata']['progressive_step'] = self.progressive_step
|
| 712 |
+
|
| 713 |
+
return compressed_data
|
| 714 |
+
|
| 715 |
+
def decompress(self, compressed_data: Dict) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 716 |
+
"""Decompress enhanced SPG compressed data."""
|
| 717 |
+
metadata = compressed_data['metadata']
|
| 718 |
+
|
| 719 |
+
if metadata.get('compression_type') == 'original_spg':
|
| 720 |
+
return self._decompress_original_spg(compressed_data)
|
| 721 |
+
|
| 722 |
+
return self._decompress_enhanced_spg(compressed_data)
|
| 723 |
+
|
| 724 |
+
def _decompress_enhanced_spg(self, compressed_data: Dict) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 725 |
+
"""Decompress enhanced multi-stage compressed data with HSA support."""
|
| 726 |
+
metadata = compressed_data['metadata']
|
| 727 |
+
|
| 728 |
+
# Get device from first available tensor
|
| 729 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 730 |
+
for storage_type in ['keys', 'values']:
|
| 731 |
+
for key, data in compressed_data[storage_type].items():
|
| 732 |
+
if isinstance(data, dict) and 'data' in data and isinstance(data['data'], torch.Tensor):
|
| 733 |
+
device = data['data'].device
|
| 734 |
+
break
|
| 735 |
+
if device != torch.device('cuda' if torch.cuda.is_available() else 'cpu'):
|
| 736 |
+
break
|
| 737 |
+
|
| 738 |
+
# Handle hybrid sparse attention format
|
| 739 |
+
if metadata.get('compression_type') == 'hybrid_sparse_attention':
|
| 740 |
+
return self._decompress_hybrid_sparse_attention(compressed_data)
|
| 741 |
+
|
| 742 |
+
# Original enhanced SPG decompression
|
| 743 |
+
original_shape = metadata['original_shape_after_stage1']
|
| 744 |
+
original_dtype = metadata['original_dtype']
|
| 745 |
+
|
| 746 |
+
keys_full = torch.zeros(original_shape, dtype=original_dtype, device=device)
|
| 747 |
+
values_full = torch.zeros(original_shape, dtype=original_dtype, device=device)
|
| 748 |
+
|
| 749 |
+
# Decompress head dimension data first
|
| 750 |
+
if 'heads_fp16' in compressed_data['keys']:
|
| 751 |
+
head_indices = compressed_data['keys']['heads_fp16']['indices']
|
| 752 |
+
head_idx_tensor = torch.tensor(head_indices, device=device, dtype=torch.long)
|
| 753 |
+
keys_full[:, head_idx_tensor, :, :] = compressed_data['keys']['heads_fp16']['data']
|
| 754 |
+
values_full[:, head_idx_tensor, :, :] = compressed_data['values']['heads_fp16']['data']
|
| 755 |
+
|
| 756 |
+
if self.config.enable_head_compression:
|
| 757 |
+
n_heads = original_shape[1]
|
| 758 |
+
other_head_indices = torch.tensor([h for h in range(n_heads) if h not in head_indices],
|
| 759 |
+
device=device, dtype=torch.long)
|
| 760 |
+
else:
|
| 761 |
+
other_head_indices = head_idx_tensor
|
| 762 |
+
else:
|
| 763 |
+
other_head_indices = torch.arange(original_shape[1], device=device, dtype=torch.long)
|
| 764 |
+
|
| 765 |
+
# Decompress sequence dimension data
|
| 766 |
+
for precision_key in [k for k in compressed_data['keys'].keys() if k.startswith('seq_')]:
|
| 767 |
+
if 'data' not in compressed_data['keys'][precision_key]:
|
| 768 |
+
continue
|
| 769 |
+
|
| 770 |
+
indices = compressed_data['keys'][precision_key]['indices']
|
| 771 |
+
idx_tensor = torch.tensor(indices, device=device, dtype=torch.long)
|
| 772 |
+
|
| 773 |
+
# All data stored as FP16 in this simplified version
|
| 774 |
+
keys_full[:, other_head_indices, :, :].index_copy_(2, idx_tensor,
|
| 775 |
+
compressed_data['keys'][precision_key]['data'])
|
| 776 |
+
values_full[:, other_head_indices, :, :].index_copy_(2, idx_tensor,
|
| 777 |
+
compressed_data['values'][precision_key]['data'])
|
| 778 |
+
|
| 779 |
+
return keys_full, values_full
|
| 780 |
+
|
| 781 |
+
def _decompress_hybrid_sparse_attention(self, compressed_data: Dict) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 782 |
+
"""Decompress RocketKV-style hybrid sparse attention data."""
|
| 783 |
+
metadata = compressed_data['metadata']
|
| 784 |
+
original_shape = metadata['original_shape']
|
| 785 |
+
|
| 786 |
+
# Get device from first available tensor
|
| 787 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 788 |
+
for head_key in compressed_data['keys'].keys():
|
| 789 |
+
if head_key.startswith('head_'):
|
| 790 |
+
device = compressed_data['keys'][head_key]['data'].device
|
| 791 |
+
break
|
| 792 |
+
|
| 793 |
+
# Initialize full tensors
|
| 794 |
+
keys_full = torch.zeros(original_shape, dtype=torch.float16, device=device)
|
| 795 |
+
values_full = torch.zeros(original_shape, dtype=torch.float16, device=device)
|
| 796 |
+
|
| 797 |
+
# Reconstruct selected heads with their tokens
|
| 798 |
+
for head_key in compressed_data['keys'].keys():
|
| 799 |
+
if not head_key.startswith('head_'):
|
| 800 |
+
continue
|
| 801 |
+
|
| 802 |
+
head_idx = int(head_key.split('_')[1])
|
| 803 |
+
head_data_k = compressed_data['keys'][head_key]
|
| 804 |
+
head_data_v = compressed_data['values'][head_key]
|
| 805 |
+
|
| 806 |
+
token_indices = head_data_k['indices']
|
| 807 |
+
|
| 808 |
+
# Place data in the correct head and token positions
|
| 809 |
+
keys_full[:, head_idx:head_idx+1, token_indices, :] = head_data_k['data']
|
| 810 |
+
values_full[:, head_idx:head_idx+1, token_indices, :] = head_data_v['data']
|
| 811 |
+
|
| 812 |
+
return keys_full, values_full
|
| 813 |
+
|
| 814 |
+
def _decompress_original_spg(self, compressed_data: Dict) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 815 |
+
"""Decompress original SPG data."""
|
| 816 |
+
metadata = compressed_data['metadata']
|
| 817 |
+
original_shape = metadata['original_shape']
|
| 818 |
+
original_dtype = metadata['original_dtype']
|
| 819 |
+
device = metadata['precision_scores'].device
|
| 820 |
+
|
| 821 |
+
keys_full = torch.zeros(original_shape, dtype=original_dtype, device=device)
|
| 822 |
+
values_full = torch.zeros(original_shape, dtype=original_dtype, device=device)
|
| 823 |
+
|
| 824 |
+
for precision_key in compressed_data['keys']:
|
| 825 |
+
data_dict = compressed_data['keys'][precision_key]
|
| 826 |
+
if 'data' in data_dict and 'indices' in data_dict:
|
| 827 |
+
indices = data_dict['indices']
|
| 828 |
+
idx_tensor = torch.tensor(indices, device=device, dtype=torch.long)
|
| 829 |
+
|
| 830 |
+
# All data stored as original precision
|
| 831 |
+
keys_full.index_copy_(2, idx_tensor, data_dict['data'])
|
| 832 |
+
values_full.index_copy_(2, idx_tensor, compressed_data['values'][precision_key]['data'])
|
| 833 |
+
|
| 834 |
+
return keys_full, values_full
|
| 835 |
+
|
| 836 |
+
def get_memory_footprint(self, compressed_data: Dict[str, Any]) -> int:
|
| 837 |
+
"""
|
| 838 |
+
Calculate ACTUAL memory usage - NO ESTIMATES.
|
| 839 |
+
Every byte is accounted for explicitly.
|
| 840 |
+
"""
|
| 841 |
+
total_bytes = 0
|
| 842 |
+
|
| 843 |
+
try:
|
| 844 |
+
# Count all stored tensors
|
| 845 |
+
for storage_type in ['keys', 'values']:
|
| 846 |
+
for key, data in compressed_data[storage_type].items():
|
| 847 |
+
if isinstance(data, dict):
|
| 848 |
+
# Data tensors
|
| 849 |
+
if 'data' in data and isinstance(data['data'], torch.Tensor):
|
| 850 |
+
total_bytes += data['data'].nelement() * data['data'].element_size()
|
| 851 |
+
|
| 852 |
+
# Scale/zero tensors
|
| 853 |
+
if 'scale' in data and isinstance(data['scale'], torch.Tensor):
|
| 854 |
+
total_bytes += data['scale'].nelement() * data['scale'].element_size()
|
| 855 |
+
if 'zero' in data and isinstance(data['zero'], torch.Tensor):
|
| 856 |
+
total_bytes += data['zero'].nelement() * data['zero'].element_size()
|
| 857 |
+
|
| 858 |
+
# Levels tensor for bit-packed data
|
| 859 |
+
if 'levels' in data and isinstance(data['levels'], torch.Tensor):
|
| 860 |
+
total_bytes += data['levels'].nelement() * data['levels'].element_size()
|
| 861 |
+
|
| 862 |
+
# Metadata overhead (measured, not estimated)
|
| 863 |
+
if 'meta' in data and isinstance(data['meta'], dict):
|
| 864 |
+
total_bytes += self.constants.INT2_METADATA_BYTES
|
| 865 |
+
|
| 866 |
+
# Indices (count only once under keys to avoid double counting)
|
| 867 |
+
if storage_type == 'keys' and 'indices' in data and data['indices']:
|
| 868 |
+
total_bytes += len(data['indices']) * self.constants.INDEX_SIZE_BYTES
|
| 869 |
+
|
| 870 |
+
# Metadata overhead
|
| 871 |
+
total_bytes += self.constants.METADATA_OVERHEAD_BYTES
|
| 872 |
+
|
| 873 |
+
logger.debug(f"Measured memory footprint: {total_bytes} bytes ({total_bytes/1024/1024:.2f} MB)")
|
| 874 |
+
return total_bytes
|
| 875 |
+
|
| 876 |
+
except Exception as e:
|
| 877 |
+
logger.error(f"Error calculating memory footprint: {e}")
|
| 878 |
+
raise
|
| 879 |
+
|
| 880 |
+
def update_quality_feedback(self, layer_idx: int, quality_metric: float):
|
| 881 |
+
"""Update quality feedback for progressive compression."""
|
| 882 |
+
self.quality_history.append(quality_metric)
|
| 883 |
+
|
| 884 |
+
# Keep only recent history
|
| 885 |
+
if len(self.quality_history) > self.constants.QUALITY_HISTORY_MAX_SIZE:
|
| 886 |
+
self.quality_history = self.quality_history[-self.constants.QUALITY_HISTORY_MAX_SIZE:]
|
| 887 |
+
|
| 888 |
+
|
| 889 |
+
class QuantizedKVCache:
|
| 890 |
+
"""Enhanced quantized KV cache with working multi-stage SPG support."""
|
| 891 |
+
|
| 892 |
+
def __init__(self, config: CompressionConfig):
|
| 893 |
+
self.config = config
|
| 894 |
+
self.compressed_data = {}
|
| 895 |
+
self.dtypes = {}
|
| 896 |
+
|
| 897 |
+
# Initialize enhanced SPG with RocketKV features
|
| 898 |
+
if config.compression_type in [CompressionType.SPG, CompressionType.ADAPTIVE_SPG]:
|
| 899 |
+
spg_config = replace(config.enhanced_spg_config,
|
| 900 |
+
enable_two_stage=False,
|
| 901 |
+
enable_adaptive=(config.compression_type == CompressionType.ADAPTIVE_SPG))
|
| 902 |
+
self.spg = EnhancedSlidingPrecisionGradient(spg_config)
|
| 903 |
+
elif config.compression_type in [CompressionType.ENHANCED_SPG, CompressionType.PROGRESSIVE_SPG]:
|
| 904 |
+
enhanced_config = config.enhanced_spg_config
|
| 905 |
+
if config.compression_type == CompressionType.PROGRESSIVE_SPG:
|
| 906 |
+
enhanced_config.enable_progressive = True
|
| 907 |
+
self.spg = EnhancedSlidingPrecisionGradient(enhanced_config)
|
| 908 |
+
else:
|
| 909 |
+
self.spg = None
|
| 910 |
+
|
| 911 |
+
self.current_position = 0
|
| 912 |
+
self.quality_history = []
|
| 913 |
+
self.n_layers = None
|
| 914 |
+
|
| 915 |
+
def compress_and_store(self, layer_idx: int, keys: torch.Tensor, values: torch.Tensor):
|
| 916 |
+
"""Compress and store KV pairs with enhanced SPG support."""
|
| 917 |
+
key_dtype = keys.dtype
|
| 918 |
+
value_dtype = values.dtype
|
| 919 |
+
|
| 920 |
+
if self.config.compression_type in [CompressionType.SPG, CompressionType.ADAPTIVE_SPG,
|
| 921 |
+
CompressionType.ENHANCED_SPG, CompressionType.PROGRESSIVE_SPG]:
|
| 922 |
+
if self.spg.layer_decay_rates is None:
|
| 923 |
+
if self.n_layers is None:
|
| 924 |
+
raise ValueError("Model layer count not set - call detect_model_layers first")
|
| 925 |
+
self.spg.initialize_layer_decay_rates(self.n_layers)
|
| 926 |
+
|
| 927 |
+
if self.config.compression_type in [CompressionType.ENHANCED_SPG, CompressionType.PROGRESSIVE_SPG]:
|
| 928 |
+
compressed_data = self.spg.compress_with_enhanced_gradient(
|
| 929 |
+
keys, values, layer_idx, self.current_position
|
| 930 |
+
)
|
| 931 |
+
else:
|
| 932 |
+
compressed_data = self.spg._fallback_to_original_spg(
|
| 933 |
+
keys, values, layer_idx, self.current_position
|
| 934 |
+
)
|
| 935 |
+
|
| 936 |
+
self.compressed_data[layer_idx] = compressed_data
|
| 937 |
+
self.dtypes[layer_idx] = {'keys': key_dtype, 'values': value_dtype}
|
| 938 |
+
else:
|
| 939 |
+
# No compression - store original tensors
|
| 940 |
+
self.compressed_data[layer_idx] = {
|
| 941 |
+
'keys': {'original': {'data': keys.clone(), 'indices': list(range(keys.shape[2]))}},
|
| 942 |
+
'values': {'original': {'data': values.clone(), 'indices': list(range(values.shape[2]))}},
|
| 943 |
+
'metadata': {
|
| 944 |
+
'compression_type': 'none',
|
| 945 |
+
'original_shape': keys.shape,
|
| 946 |
+
'original_dtype': keys.dtype
|
| 947 |
+
}
|
| 948 |
+
}
|
| 949 |
+
self.dtypes[layer_idx] = {'keys': key_dtype, 'values': value_dtype}
|
| 950 |
+
|
| 951 |
+
def get_decompressed(self, layer_idx: int) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 952 |
+
"""Get decompressed KV pairs with enhanced SPG support."""
|
| 953 |
+
if self.config.compression_type in [CompressionType.SPG, CompressionType.ADAPTIVE_SPG,
|
| 954 |
+
CompressionType.ENHANCED_SPG, CompressionType.PROGRESSIVE_SPG]:
|
| 955 |
+
if layer_idx in self.compressed_data:
|
| 956 |
+
return self.spg.decompress(self.compressed_data[layer_idx])
|
| 957 |
+
return None, None
|
| 958 |
+
else:
|
| 959 |
+
# No compression - return original tensors
|
| 960 |
+
if layer_idx in self.compressed_data:
|
| 961 |
+
data = self.compressed_data[layer_idx]
|
| 962 |
+
return data['keys']['original']['data'], data['values']['original']['data']
|
| 963 |
+
return None, None
|
| 964 |
+
|
| 965 |
+
def get_memory_footprint(self) -> int:
|
| 966 |
+
"""Calculate actual memory usage with enhanced SPG support."""
|
| 967 |
+
total_bytes = 0
|
| 968 |
+
constants = ResearchConstants()
|
| 969 |
+
|
| 970 |
+
if self.config.compression_type in [CompressionType.SPG, CompressionType.ADAPTIVE_SPG,
|
| 971 |
+
CompressionType.ENHANCED_SPG, CompressionType.PROGRESSIVE_SPG]:
|
| 972 |
+
for layer_idx in self.compressed_data:
|
| 973 |
+
total_bytes += self.spg.get_memory_footprint(self.compressed_data[layer_idx])
|
| 974 |
+
else:
|
| 975 |
+
# No compression - calculate uncompressed memory
|
| 976 |
+
for layer_idx in self.compressed_data:
|
| 977 |
+
data = self.compressed_data[layer_idx]
|
| 978 |
+
keys_data = data['keys']['original']['data']
|
| 979 |
+
values_data = data['values']['original']['data']
|
| 980 |
+
total_bytes += keys_data.nelement() * keys_data.element_size()
|
| 981 |
+
total_bytes += values_data.nelement() * values_data.element_size()
|
| 982 |
+
total_bytes += constants.METADATA_OVERHEAD_BYTES
|
| 983 |
+
|
| 984 |
+
return total_bytes
|
| 985 |
+
|
| 986 |
+
def update_position(self, new_position: int):
|
| 987 |
+
"""Update current generation position."""
|
| 988 |
+
self.current_position = new_position
|
| 989 |
+
|
| 990 |
+
def update_quality_feedback(self, layer_idx: int, quality_metric: float):
|
| 991 |
+
"""Provide quality feedback for adaptive methods."""
|
| 992 |
+
if self.config.compression_type == CompressionType.ADAPTIVE_SPG and hasattr(self.spg, 'update_decay_rate'):
|
| 993 |
+
target_quality = self.config.enhanced_spg_config.target_perplexity_delta
|
| 994 |
+
self.spg.update_decay_rate(layer_idx, quality_metric, target_quality)
|
| 995 |
+
self.quality_history.append((layer_idx, quality_metric))
|
| 996 |
+
elif self.config.compression_type in [CompressionType.ENHANCED_SPG, CompressionType.PROGRESSIVE_SPG]:
|
| 997 |
+
self.spg.update_quality_feedback(layer_idx, quality_metric)
|
| 998 |
+
|
| 999 |
+
|
| 1000 |
+
def detect_model_layers(model) -> int:
|
| 1001 |
+
"""Detect the number of transformer layers with comprehensive validation."""
|
| 1002 |
+
config_attrs = [
|
| 1003 |
+
'num_hidden_layers',
|
| 1004 |
+
'n_layer',
|
| 1005 |
+
'num_layers',
|
| 1006 |
+
'n_layers',
|
| 1007 |
+
'decoder_layers',
|
| 1008 |
+
'n_head_layers',
|
| 1009 |
+
]
|
| 1010 |
+
|
| 1011 |
+
for attr in config_attrs:
|
| 1012 |
+
if hasattr(model.config, attr):
|
| 1013 |
+
n_layers = getattr(model.config, attr)
|
| 1014 |
+
if isinstance(n_layers, int) and n_layers > 0:
|
| 1015 |
+
logger.info(f"Detected {n_layers} layers from config.{attr}")
|
| 1016 |
+
return n_layers
|
| 1017 |
+
|
| 1018 |
+
layer_patterns = [
|
| 1019 |
+
'layer', 'layers', 'h', 'blocks', 'decoder.layers', 'transformer_blocks', 'decoderLayer',
|
| 1020 |
+
]
|
| 1021 |
+
|
| 1022 |
+
for module_name, module in model.named_modules():
|
| 1023 |
+
for pattern in layer_patterns:
|
| 1024 |
+
if pattern in module_name.lower():
|
| 1025 |
+
if hasattr(module, '__len__'):
|
| 1026 |
+
n_layers = len(module)
|
| 1027 |
+
if n_layers > 0:
|
| 1028 |
+
logger.info(f"Detected {n_layers} layers by counting {module_name}")
|
| 1029 |
+
return n_layers
|
| 1030 |
+
|
| 1031 |
+
decoder_layer_types = [
|
| 1032 |
+
'TransformerBlock', 'DecoderLayer', 'EncoderLayer', 'Block', 'Layer',
|
| 1033 |
+
'GPT2Block', 'LlamaDecoderLayer', 'MistralDecoderLayer', 'OPTDecoderLayer',
|
| 1034 |
+
]
|
| 1035 |
+
|
| 1036 |
+
layers = []
|
| 1037 |
+
for module in model.modules():
|
| 1038 |
+
module_type = type(module).__name__
|
| 1039 |
+
if any(layer_type in module_type for layer_type in decoder_layer_types):
|
| 1040 |
+
layers.append(module)
|
| 1041 |
+
|
| 1042 |
+
if layers:
|
| 1043 |
+
n_layers = len(set(layers))
|
| 1044 |
+
if n_layers > 0:
|
| 1045 |
+
logger.info(f"Detected {n_layers} layers by module type matching")
|
| 1046 |
+
return n_layers
|
| 1047 |
+
|
| 1048 |
+
# Fail fast if cannot detect layers
|
| 1049 |
+
raise ValueError(
|
| 1050 |
+
f"Could not automatically detect the number of layers for model {type(model).__name__}. "
|
| 1051 |
+
"Please check the model architecture and update the detection logic."
|
| 1052 |
+
)
|