# adapted for Zero GPU on Hugging Face import spaces import os import glob import json import traceback import logging import gradio as gr import numpy as np import librosa import torch import asyncio import ffmpeg import subprocess import sys import io import wave from datetime import datetime #from fairseq import checkpoint_utils import urllib.request import zipfile import shutil import gradio as gr from textwrap import dedent import pprint import time import re import requests import subprocess from pathlib import Path from scipy.io.wavfile import write from scipy.io import wavfile import soundfile as sf from lib.infer_pack.models import ( SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono, SynthesizerTrnMs768NSFsid, SynthesizerTrnMs768NSFsid_nono, ) from vc_infer_pipeline import VC from config import Config config = Config() logging.getLogger("numba").setLevel(logging.WARNING) spaces_hf = True #os.getenv("SYSTEM") == "spaces" force_support = True audio_mode = [] f0method_mode = [] f0method_info = "" headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/121.0.0.0 Safari/537.36" } pattern = r'//www\.bilibili\.com/video[^"]*' # Download models #urllib.request.urlretrieve("https://download.openxlab.org.cn/models/Kevin676/rvc-models/weight/hubert_base", "hubert_base.pt") urllib.request.urlretrieve("https://download.openxlab.org.cn/models/Kevin676/rvc-models/weight/rmvpe", "rmvpe.pt") # Get zip name pattern_zip = r"/([^/]+)\.zip$" os.system("pip install fairseq") from fairseq import checkpoint_utils global hubert_model models, _, _ = checkpoint_utils.load_model_ensemble_and_task( ["hubert_base.pt"], suffix="", ) hubert_model = models[0] hubert_model = hubert_model.to(config.device) if config.is_half: hubert_model = hubert_model.half() else: hubert_model = hubert_model.float() hubert_model.eval() def get_file_name(url): match = re.search(pattern_zip, url) if match: extracted_string = match.group(1) return extracted_string else: raise Exception("没有找到AI歌手模型的zip压缩包。") # Get RVC models def extract_zip(extraction_folder, zip_name): os.makedirs(extraction_folder) with zipfile.ZipFile(zip_name, 'r') as zip_ref: zip_ref.extractall(extraction_folder) os.remove(zip_name) index_filepath, model_filepath = None, None for root, dirs, files in os.walk(extraction_folder): for name in files: if name.endswith('.index') and os.stat(os.path.join(root, name)).st_size > 1024 * 100: index_filepath = os.path.join(root, name) if name.endswith('.pth') and os.stat(os.path.join(root, name)).st_size > 1024 * 1024 * 40: model_filepath = os.path.join(root, name) if not model_filepath: raise Exception(f'No .pth model file was found in the extracted zip. Please check {extraction_folder}.') # move model and index file to extraction folder os.rename(model_filepath, os.path.join(extraction_folder, os.path.basename(model_filepath))) if index_filepath: os.rename(index_filepath, os.path.join(extraction_folder, os.path.basename(index_filepath))) # remove any unnecessary nested folders for filepath in os.listdir(extraction_folder): if os.path.isdir(os.path.join(extraction_folder, filepath)): shutil.rmtree(os.path.join(extraction_folder, filepath)) # Get username in OpenXLab def get_username(url): match_username = re.search(r'models/(.*?)/', url) if match_username: result = match_username.group(1) return result def download_online_model(url, dir_name): if url.startswith('https://download.openxlab.org.cn/models/'): zip_path = get_username(url) + "-" + get_file_name(url) else: zip_path = get_file_name(url) if not os.path.exists(zip_path): try: zip_name = url.split('/')[-1] extraction_folder = os.path.join(zip_path, dir_name) if os.path.exists(extraction_folder): raise Exception(f'Voice model directory {dir_name} already exists! Choose a different name for your voice model.') if 'pixeldrain.com' in url: url = f'https://pixeldrain.com/api/file/{zip_name}' urllib.request.urlretrieve(url, zip_name) extract_zip(extraction_folder, zip_name) #return f'[√] {dir_name} Model successfully downloaded!' except Exception as e: raise Exception(str(e)) #Get bilibili BV id def get_bilibili_video_id(url): match = re.search(r'/video/([a-zA-Z0-9]+)/', url) extracted_value = match.group(1) return extracted_value # Get bilibili audio def find_first_appearance_with_neighborhood(text, pattern): match = re.search(pattern, text) if match: return match.group() else: return None def search_bilibili(keyword): if keyword.startswith("BV"): req = requests.get("https://search.bilibili.com/all?keyword={}&duration=1".format(keyword), headers=headers).text else: req = requests.get("https://search.bilibili.com/all?keyword={}&duration=1&tids=3&page=1".format(keyword), headers=headers).text video_link = "https:" + find_first_appearance_with_neighborhood(req, pattern) return video_link # Save bilibili audio def get_response(html_url): headers = { "referer": "https://www.bilibili.com/", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/121.0.0.0 Safari/537.36" } response = requests.get(html_url, headers=headers) return response def get_video_info(html_url): response = get_response(html_url) html_data = re.findall('', response.text)[0] json_data = json.loads(html_data) if json_data['data']['dash']['audio'][0]['backupUrl']!=None: audio_url = json_data['data']['dash']['audio'][0]['backupUrl'][0] else: audio_url = json_data['data']['dash']['audio'][0]['baseUrl'] return audio_url def save_audio(title, audio_url): audio_content = get_response(audio_url).content with open(title + '.wav', mode='wb') as f: f.write(audio_content) print("音乐内容保存完成") # Use UVR-HP5/2 urllib.request.urlretrieve("https://download.openxlab.org.cn/models/Kevin676/rvc-models/weight/UVR-HP2.pth", "uvr5/uvr_model/UVR-HP2.pth") urllib.request.urlretrieve("https://download.openxlab.org.cn/models/Kevin676/rvc-models/weight/UVR-HP5.pth", "uvr5/uvr_model/UVR-HP5.pth") #urllib.request.urlretrieve("https://huggingface.co/fastrolling/uvr/resolve/main/Main_Models/5_HP-Karaoke-UVR.pth", "uvr5/uvr_model/UVR-HP5.pth") from uvr5.vr import AudioPre weight_uvr5_root = "uvr5/uvr_model" uvr5_names = [] for name in os.listdir(weight_uvr5_root): if name.endswith(".pth") or "onnx" in name: uvr5_names.append(name.replace(".pth", "")) func = AudioPre pre_fun_hp2 = func( agg=int(10), model_path=os.path.join(weight_uvr5_root, "UVR-HP2.pth"), device="cuda", is_half=True, ) pre_fun_hp5 = func( agg=int(10), model_path=os.path.join(weight_uvr5_root, "UVR-HP5.pth"), device="cuda", is_half=True, ) # Separate vocals @spaces.GPU(duration=80) def youtube_downloader( video_identifier, filename, split_model, ): print(video_identifier) video_info = get_video_info(video_identifier) print(video_info) audio_content = get_response(video_info).content with open(filename.strip() + ".wav", mode="wb") as f: f.write(audio_content) audio_path = filename.strip() + ".wav" # make dir output os.makedirs("output", exist_ok=True) if split_model=="UVR-HP2": pre_fun = pre_fun_hp2 else: pre_fun = pre_fun_hp5 pre_fun._path_audio_(audio_path, f"./output/{split_model}/{filename}/", f"./output/{split_model}/{filename}/", "wav") os.remove(filename.strip()+".wav") return f"./output/{split_model}/{filename}/vocal_{filename}.wav_10.wav", f"./output/{split_model}/{filename}/instrument_{filename}.wav_10.wav" # Original code if force_support is False or spaces_hf is True: if spaces_hf is True: audio_mode = ["Upload audio", "TTS Audio"] else: audio_mode = ["Input path", "Upload audio", "TTS Audio"] f0method_mode = ["pm", "harvest"] f0method_info = "PM is fast, Harvest is good but extremely slow, Rvmpe is alternative to harvest (might be better). (Default: PM)" else: audio_mode = ["Input path", "Upload audio", "Youtube", "TTS Audio"] f0method_mode = ["pm", "harvest", "crepe"] f0method_info = "PM is fast, Harvest is good but extremely slow, Rvmpe is alternative to harvest (might be better), and Crepe effect is good but requires GPU (Default: PM)" if os.path.isfile("rmvpe.pt"): f0method_mode.insert(2, "rmvpe") def create_vc_fn(model_name, tgt_sr, net_g, vc, if_f0, version, file_index): def vc_fn( vc_audio_mode, vc_input, vc_upload, tts_text, tts_voice, f0_up_key, f0_method, index_rate, filter_radius, resample_sr, rms_mix_rate, protect, ): try: logs = [] print(f"Converting using {model_name}...") logs.append(f"Converting using {model_name}...") yield "\n".join(logs), None if vc_audio_mode == "Input path" or "Youtube" and vc_input != "": audio, sr = librosa.load(vc_input, sr=16000, mono=True) elif vc_audio_mode == "Upload audio": if vc_upload is None: return "You need to upload an audio", None sampling_rate, audio = vc_upload duration = audio.shape[0] / sampling_rate if duration > 20 and spaces_hf: return "Please upload an audio file that is less than 20 seconds. If you need to generate a longer audio file, please use Colab.", None audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32) if len(audio.shape) > 1: audio = librosa.to_mono(audio.transpose(1, 0)) if sampling_rate != 16000: audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000) times = [0, 0, 0] f0_up_key = int(f0_up_key) audio_opt = vc.pipeline( hubert_model, net_g, 0, audio, vc_input, times, f0_up_key, f0_method, file_index, # file_big_npy, index_rate, if_f0, filter_radius, tgt_sr, resample_sr, rms_mix_rate, version, protect, f0_file=None, ) info = f"[{datetime.now().strftime('%Y-%m-%d %H:%M')}]: npy: {times[0]}, f0: {times[1]}s, infer: {times[2]}s" print(f"{model_name} | {info}") logs.append(f"Successfully Convert {model_name}\n{info}") yield "\n".join(logs), (tgt_sr, audio_opt) except Exception as err: info = traceback.format_exc() print(info) print(f"Error when using {model_name}.\n{str(err)}") yield info, None return vc_fn def combine_vocal_and_inst(model_name, song_name, song_id, split_model, cover_song, vocal_volume, inst_volume): #samplerate, data = wavfile.read(cover_song) vocal_path = cover_song #f"output/{split_model}/{song_id}/vocal_{song_id}.wav_10.wav" output_path = song_name.strip() + "-AI-" + ''.join(os.listdir(f"{model_name}")).strip() + "翻唱版.mp3" inst_path = f"output/{split_model}/{song_id}/instrument_{song_id}.wav_10.wav" #with wave.open(vocal_path, "w") as wave_file: #wave_file.setnchannels(1) #wave_file.setsampwidth(2) #wave_file.setframerate(samplerate) #wave_file.writeframes(data.tobytes()) command = f'ffmpeg -y -i {inst_path} -i {vocal_path} -filter_complex [0:a]volume={inst_volume}[i];[1:a]volume={vocal_volume}[v];[i][v]amix=inputs=2:duration=longest[a] -map [a] -b:a 320k -c:a libmp3lame {output_path}' result = subprocess.run(command.split(), stdout=subprocess.PIPE) print(result.stdout.decode()) return output_path ''' def load_hubert(): from fairseq import checkpoint_utils global hubert_model models, _, _ = checkpoint_utils.load_model_ensemble_and_task( ["hubert_base.pt"], suffix="", ) hubert_model = models[0] hubert_model = hubert_model.to(config.device) if config.is_half: hubert_model = hubert_model.half() else: hubert_model = hubert_model.float() hubert_model.eval() ''' ''' def load_hubert(): global hubert_model # Load the model state dictionary from the file state_dict = torch.load("hubert_base.pt", map_location="cpu") # Initialize the model from fairseq.models.hubert import HubertModel hubert_model = HubertModel.build_model(state_dict['args'], task=None) # Load the state dictionary into the model hubert_model.load_state_dict(state_dict['model']) # Move the model to the desired device hubert_model = hubert_model.to("cpu") # Set the model to half precision if required if config.is_half: hubert_model = hubert_model.half() else: hubert_model = hubert_model.float() # Set the model to evaluation mode hubert_model.eval() load_hubert() ''' def rvc_models(model_name): global vc, net_g, index_files, tgt_sr, version categories = [] models = [] for w_root, w_dirs, _ in os.walk(f"{model_name}"): model_count = 1 for sub_dir in w_dirs: pth_files = glob.glob(f"{model_name}/{sub_dir}/*.pth") index_files = glob.glob(f"{model_name}/{sub_dir}/*.index") if pth_files == []: print(f"Model [{model_count}/{len(w_dirs)}]: No Model file detected, skipping...") continue cpt = torch.load(pth_files[0]) tgt_sr = cpt["config"][-1] cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk if_f0 = cpt.get("f0", 1) version = cpt.get("version", "v1") if version == "v1": if if_f0 == 1: net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half) else: net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) model_version = "V1" elif version == "v2": if if_f0 == 1: net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half) else: net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"]) model_version = "V2" del net_g.enc_q print(net_g.load_state_dict(cpt["weight"], strict=False)) net_g.eval().to(config.device) if config.is_half: net_g = net_g.half() else: net_g = net_g.float() vc = VC(tgt_sr, config) if index_files == []: print("Warning: No Index file detected!") index_info = "None" model_index = "" else: index_info = index_files[0] model_index = index_files[0] print(f"Model loaded [{model_count}/{len(w_dirs)}]: {index_files[0]} / {index_info} | ({model_version})") model_count += 1 models.append((index_files[0][:-4], index_files[0][:-4], "", "", model_version, create_vc_fn(index_files[0], tgt_sr, net_g, vc, if_f0, version, model_index))) categories.append(["Models", "", models]) return vc, net_g, index_files, tgt_sr, version #load_hubert() singers="您的专属AI歌手阵容:" @spaces.GPU(duration=60) def infer_gpu(hubert_model, net_g, audio, f0_up_key, index_file, tgt_sr, version, f0_file=None): return vc.pipeline( hubert_model, net_g, 0, audio, "", [0, 0, 0], f0_up_key, "rmvpe", index_file, 0.7, 1, 3, tgt_sr, 0, 0.25, version, 0.33, f0_file=None, ) def rvc_infer_music(url, model_name, song_name, split_model, f0_up_key, vocal_volume, inst_volume): #load_hubert() #print(hubert_model) url = url.strip().replace(" ", "") model_name = model_name.strip().replace(" ", "") if url.startswith('https://download.openxlab.org.cn/models/'): zip_path = get_username(url) + "-" + get_file_name(url) else: zip_path = get_file_name(url) global singers if model_name not in singers: singers = singers+ ' '+ model_name download_online_model(url, model_name) rvc_models(zip_path) song_name = song_name.strip().replace(" ", "") video_identifier = search_bilibili(song_name) song_id = get_bilibili_video_id(video_identifier) if os.path.isdir(f"./output/{split_model}/{song_id}")==True: audio, sr = librosa.load(f"./output/{split_model}/{song_id}/vocal_{song_id}.wav_10.wav", sr=16000, mono=True) song_infer = infer_gpu(hubert_model, net_g, audio, f0_up_key, index_files[0], tgt_sr, version, f0_file=None) else: audio, sr = librosa.load(youtube_downloader(video_identifier, song_id, split_model)[0], sr=16000, mono=True) song_infer = infer_gpu(hubert_model, net_g, audio, f0_up_key, index_files[0], tgt_sr, version, f0_file=None) sf.write(song_name.strip()+zip_path+"AI翻唱.wav", song_infer, tgt_sr) output_full_song = combine_vocal_and_inst(zip_path, song_name.strip(), song_id, split_model, song_name.strip()+zip_path+"AI翻唱.wav", vocal_volume, inst_volume) os.remove(song_name.strip()+zip_path+"AI翻唱.wav") return output_full_song, singers app = gr.Blocks(theme="JohnSmith9982/small_and_pretty") with app: with gr.Tab("中文版"): gr.Markdown("#