Spaces:
Running
Running
Commit
·
1fc75d2
0
Parent(s):
Duplicate from kevinwang676/VoiceChanger
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +68 -0
- .gitignore +174 -0
- LICENSE +21 -0
- NotoSansSC-Regular.otf +3 -0
- README.md +12 -0
- app_multi.py +917 -0
- black_cache.png +0 -0
- checkpoints/SadTalker_V0.0.2_256.safetensors +3 -0
- checkpoints/SadTalker_V0.0.2_512.safetensors +3 -0
- checkpoints/mapping_00109-model.pth.tar +3 -0
- checkpoints/mapping_00229-model.pth.tar +3 -0
- cog.yaml +35 -0
- config.py +17 -0
- gfpgan/weights/GFPGANv1.4.pth +3 -0
- gfpgan/weights/alignment_WFLW_4HG.pth +3 -0
- gfpgan/weights/detection_Resnet50_Final.pth +3 -0
- gfpgan/weights/parsing_parsenet.pth +3 -0
- hubert_base.pt +3 -0
- infer_pack/attentions.py +417 -0
- infer_pack/commons.py +166 -0
- infer_pack/models.py +1124 -0
- infer_pack/models_onnx.py +818 -0
- infer_pack/modules.py +522 -0
- infer_pack/modules/F0Predictor/DioF0Predictor.py +90 -0
- infer_pack/modules/F0Predictor/F0Predictor.py +16 -0
- infer_pack/modules/F0Predictor/HarvestF0Predictor.py +86 -0
- infer_pack/modules/F0Predictor/PMF0Predictor.py +97 -0
- infer_pack/modules/F0Predictor/__init__.py +0 -0
- infer_pack/onnx_inference.py +139 -0
- infer_pack/transforms.py +209 -0
- inference.py +145 -0
- launcher.py +204 -0
- model/arianagrande/Ariana.png +0 -0
- model/arianagrande/added_IVF1033_Flat_nprobe_1_v2.index +3 -0
- model/arianagrande/arianagrande.pth +3 -0
- model/arianagrande/config.json +11 -0
- model/qing/added_IVF1502_Flat_nprobe_1_yiqing_v2.index +3 -0
- model/qing/config.json +11 -0
- model/qing/cover.png +0 -0
- model/qing/yiqing.pth +3 -0
- model/syz/added_IVF1249_Flat_nprobe_1_syz_v2.index +3 -0
- model/syz/config.json +11 -0
- model/syz/cover.png +0 -0
- model/syz/syz.pth +3 -0
- multi_config.json +9 -0
- packages.txt +2 -0
- predict.py +192 -0
- req.txt +22 -0
- requirements.txt +40 -0
- rmvpe.pt +3 -0
.gitattributes
ADDED
|
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
*.index filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
model/macmiller/macmiller.png filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
model/hamza/Hamza.png filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
model/gambino/Hamza.png filter=lfs diff=lfs merge=lfs -text
|
| 39 |
+
model/angele/Angele.png filter=lfs diff=lfs merge=lfs -text
|
| 40 |
+
model/leto/Leto.png filter=lfs diff=lfs merge=lfs -text
|
| 41 |
+
NotoSansSC-Regular.otf filter=lfs diff=lfs merge=lfs -text
|
| 42 |
+
SadTalker/checkpoints/mapping_00109-model.pth.tar filter=lfs diff=lfs merge=lfs -text
|
| 43 |
+
SadTalker/checkpoints/mapping_00229-model.pth.tar filter=lfs diff=lfs merge=lfs -text
|
| 44 |
+
docs/example_crop.gif filter=lfs diff=lfs merge=lfs -text
|
| 45 |
+
docs/example_crop_still.gif filter=lfs diff=lfs merge=lfs -text
|
| 46 |
+
docs/example_full.gif filter=lfs diff=lfs merge=lfs -text
|
| 47 |
+
docs/example_full_enhanced.gif filter=lfs diff=lfs merge=lfs -text
|
| 48 |
+
docs/free_view_result.gif filter=lfs diff=lfs merge=lfs -text
|
| 49 |
+
docs/resize_good.gif filter=lfs diff=lfs merge=lfs -text
|
| 50 |
+
docs/resize_no.gif filter=lfs diff=lfs merge=lfs -text
|
| 51 |
+
docs/using_ref_video.gif filter=lfs diff=lfs merge=lfs -text
|
| 52 |
+
examples/driven_audio/chinese_news.wav filter=lfs diff=lfs merge=lfs -text
|
| 53 |
+
examples/driven_audio/deyu.wav filter=lfs diff=lfs merge=lfs -text
|
| 54 |
+
examples/driven_audio/eluosi.wav filter=lfs diff=lfs merge=lfs -text
|
| 55 |
+
examples/driven_audio/fayu.wav filter=lfs diff=lfs merge=lfs -text
|
| 56 |
+
examples/driven_audio/imagine.wav filter=lfs diff=lfs merge=lfs -text
|
| 57 |
+
examples/driven_audio/japanese.wav filter=lfs diff=lfs merge=lfs -text
|
| 58 |
+
examples/ref_video/WDA_AlexandriaOcasioCortez_000.mp4 filter=lfs diff=lfs merge=lfs -text
|
| 59 |
+
examples/ref_video/WDA_KatieHill_000.mp4 filter=lfs diff=lfs merge=lfs -text
|
| 60 |
+
examples/source_image/art_16.png filter=lfs diff=lfs merge=lfs -text
|
| 61 |
+
examples/source_image/art_17.png filter=lfs diff=lfs merge=lfs -text
|
| 62 |
+
examples/source_image/art_3.png filter=lfs diff=lfs merge=lfs -text
|
| 63 |
+
examples/source_image/art_4.png filter=lfs diff=lfs merge=lfs -text
|
| 64 |
+
examples/source_image/art_5.png filter=lfs diff=lfs merge=lfs -text
|
| 65 |
+
examples/source_image/art_8.png filter=lfs diff=lfs merge=lfs -text
|
| 66 |
+
examples/source_image/art_9.png filter=lfs diff=lfs merge=lfs -text
|
| 67 |
+
checkpoints/mapping_00109-model.pth.tar filter=lfs diff=lfs merge=lfs -text
|
| 68 |
+
checkpoints/mapping_00229-model.pth.tar filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
|
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Byte-compiled / optimized / DLL files
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.py[cod]
|
| 4 |
+
*$py.class
|
| 5 |
+
|
| 6 |
+
# C extensions
|
| 7 |
+
*.so
|
| 8 |
+
|
| 9 |
+
# Distribution / packaging
|
| 10 |
+
.Python
|
| 11 |
+
build/
|
| 12 |
+
develop-eggs/
|
| 13 |
+
dist/
|
| 14 |
+
downloads/
|
| 15 |
+
eggs/
|
| 16 |
+
.eggs/
|
| 17 |
+
lib/
|
| 18 |
+
lib64/
|
| 19 |
+
parts/
|
| 20 |
+
sdist/
|
| 21 |
+
var/
|
| 22 |
+
wheels/
|
| 23 |
+
share/python-wheels/
|
| 24 |
+
*.egg-info/
|
| 25 |
+
.installed.cfg
|
| 26 |
+
*.egg
|
| 27 |
+
MANIFEST
|
| 28 |
+
|
| 29 |
+
# PyInstaller
|
| 30 |
+
# Usually these files are written by a python script from a template
|
| 31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
| 32 |
+
*.manifest
|
| 33 |
+
*.spec
|
| 34 |
+
|
| 35 |
+
# Installer logs
|
| 36 |
+
pip-log.txt
|
| 37 |
+
pip-delete-this-directory.txt
|
| 38 |
+
|
| 39 |
+
# Unit test / coverage reports
|
| 40 |
+
htmlcov/
|
| 41 |
+
.tox/
|
| 42 |
+
.nox/
|
| 43 |
+
.coverage
|
| 44 |
+
.coverage.*
|
| 45 |
+
.cache
|
| 46 |
+
nosetests.xml
|
| 47 |
+
coverage.xml
|
| 48 |
+
*.cover
|
| 49 |
+
*.py,cover
|
| 50 |
+
.hypothesis/
|
| 51 |
+
.pytest_cache/
|
| 52 |
+
cover/
|
| 53 |
+
|
| 54 |
+
# Translations
|
| 55 |
+
*.mo
|
| 56 |
+
*.pot
|
| 57 |
+
|
| 58 |
+
# Django stuff:
|
| 59 |
+
*.log
|
| 60 |
+
local_settings.py
|
| 61 |
+
db.sqlite3
|
| 62 |
+
db.sqlite3-journal
|
| 63 |
+
|
| 64 |
+
# Flask stuff:
|
| 65 |
+
instance/
|
| 66 |
+
.webassets-cache
|
| 67 |
+
|
| 68 |
+
# Scrapy stuff:
|
| 69 |
+
.scrapy
|
| 70 |
+
|
| 71 |
+
# Sphinx documentation
|
| 72 |
+
docs/_build/
|
| 73 |
+
|
| 74 |
+
# PyBuilder
|
| 75 |
+
.pybuilder/
|
| 76 |
+
target/
|
| 77 |
+
|
| 78 |
+
# Jupyter Notebook
|
| 79 |
+
.ipynb_checkpoints
|
| 80 |
+
|
| 81 |
+
# IPython
|
| 82 |
+
profile_default/
|
| 83 |
+
ipython_config.py
|
| 84 |
+
|
| 85 |
+
# pyenv
|
| 86 |
+
# For a library or package, you might want to ignore these files since the code is
|
| 87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
| 88 |
+
# .python-version
|
| 89 |
+
|
| 90 |
+
# pipenv
|
| 91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
| 92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
| 93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
| 94 |
+
# install all needed dependencies.
|
| 95 |
+
#Pipfile.lock
|
| 96 |
+
|
| 97 |
+
# poetry
|
| 98 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
| 99 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
| 100 |
+
# commonly ignored for libraries.
|
| 101 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
| 102 |
+
#poetry.lock
|
| 103 |
+
|
| 104 |
+
# pdm
|
| 105 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
| 106 |
+
#pdm.lock
|
| 107 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
| 108 |
+
# in version control.
|
| 109 |
+
# https://pdm.fming.dev/#use-with-ide
|
| 110 |
+
.pdm.toml
|
| 111 |
+
|
| 112 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
| 113 |
+
__pypackages__/
|
| 114 |
+
|
| 115 |
+
# Celery stuff
|
| 116 |
+
celerybeat-schedule
|
| 117 |
+
celerybeat.pid
|
| 118 |
+
|
| 119 |
+
# SageMath parsed files
|
| 120 |
+
*.sage.py
|
| 121 |
+
|
| 122 |
+
# Environments
|
| 123 |
+
.env
|
| 124 |
+
.venv
|
| 125 |
+
env/
|
| 126 |
+
venv/
|
| 127 |
+
ENV/
|
| 128 |
+
env.bak/
|
| 129 |
+
venv.bak/
|
| 130 |
+
|
| 131 |
+
# Spyder project settings
|
| 132 |
+
.spyderproject
|
| 133 |
+
.spyproject
|
| 134 |
+
|
| 135 |
+
# Rope project settings
|
| 136 |
+
.ropeproject
|
| 137 |
+
|
| 138 |
+
# mkdocs documentation
|
| 139 |
+
/site
|
| 140 |
+
|
| 141 |
+
# mypy
|
| 142 |
+
.mypy_cache/
|
| 143 |
+
.dmypy.json
|
| 144 |
+
dmypy.json
|
| 145 |
+
|
| 146 |
+
# Pyre type checker
|
| 147 |
+
.pyre/
|
| 148 |
+
|
| 149 |
+
# pytype static type analyzer
|
| 150 |
+
.pytype/
|
| 151 |
+
|
| 152 |
+
# Cython debug symbols
|
| 153 |
+
cython_debug/
|
| 154 |
+
|
| 155 |
+
# PyCharm
|
| 156 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
| 157 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
| 158 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
| 159 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
| 160 |
+
.idea/
|
| 161 |
+
|
| 162 |
+
examples/results/*
|
| 163 |
+
gfpgan/*
|
| 164 |
+
checkpoints/*
|
| 165 |
+
assets/*
|
| 166 |
+
results/*
|
| 167 |
+
Dockerfile
|
| 168 |
+
start_docker.sh
|
| 169 |
+
start.sh
|
| 170 |
+
|
| 171 |
+
checkpoints
|
| 172 |
+
|
| 173 |
+
# Mac
|
| 174 |
+
.DS_Store
|
LICENSE
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
MIT License
|
| 2 |
+
|
| 3 |
+
Copyright (c) 2023 Tencent AI Lab
|
| 4 |
+
|
| 5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 6 |
+
of this software and associated documentation files (the "Software"), to deal
|
| 7 |
+
in the Software without restriction, including without limitation the rights
|
| 8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 9 |
+
copies of the Software, and to permit persons to whom the Software is
|
| 10 |
+
furnished to do so, subject to the following conditions:
|
| 11 |
+
|
| 12 |
+
The above copyright notice and this permission notice shall be included in all
|
| 13 |
+
copies or substantial portions of the Software.
|
| 14 |
+
|
| 15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| 21 |
+
SOFTWARE.
|
NotoSansSC-Regular.otf
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a2b93e6c2db05d6bbbf6f27d413ec73269735b7b679019c8a5aa9670ff0ffbf2
|
| 3 |
+
size 8482020
|
README.md
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: VoiceChange
|
| 3 |
+
emoji: 👀
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: purple
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 3.28.3
|
| 8 |
+
app_file: app_multi.py
|
| 9 |
+
pinned: true
|
| 10 |
+
license: mit
|
| 11 |
+
duplicated_from: kevinwang676/VoiceChanger
|
| 12 |
+
---
|
app_multi.py
ADDED
|
@@ -0,0 +1,917 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Union
|
| 2 |
+
|
| 3 |
+
from argparse import ArgumentParser
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
import subprocess
|
| 6 |
+
import librosa
|
| 7 |
+
import os
|
| 8 |
+
import time
|
| 9 |
+
import random
|
| 10 |
+
import yt_dlp
|
| 11 |
+
|
| 12 |
+
from search import get_youtube, download_random
|
| 13 |
+
import soundfile
|
| 14 |
+
|
| 15 |
+
import matplotlib.pyplot as plt
|
| 16 |
+
import numpy as np
|
| 17 |
+
from PIL import Image, ImageDraw, ImageFont
|
| 18 |
+
from moviepy.editor import *
|
| 19 |
+
from moviepy.video.io.VideoFileClip import VideoFileClip
|
| 20 |
+
import moviepy.editor as mpe
|
| 21 |
+
|
| 22 |
+
import asyncio
|
| 23 |
+
import json
|
| 24 |
+
import hashlib
|
| 25 |
+
from os import path, getenv
|
| 26 |
+
from pydub import AudioSegment
|
| 27 |
+
|
| 28 |
+
import gradio as gr
|
| 29 |
+
|
| 30 |
+
import torch
|
| 31 |
+
|
| 32 |
+
import edge_tts
|
| 33 |
+
|
| 34 |
+
from datetime import datetime
|
| 35 |
+
from scipy.io.wavfile import write
|
| 36 |
+
|
| 37 |
+
import config
|
| 38 |
+
import util
|
| 39 |
+
from infer_pack.models import (
|
| 40 |
+
SynthesizerTrnMs768NSFsid,
|
| 41 |
+
SynthesizerTrnMs768NSFsid_nono
|
| 42 |
+
)
|
| 43 |
+
from vc_infer_pipeline import VC
|
| 44 |
+
|
| 45 |
+
# music search
|
| 46 |
+
|
| 47 |
+
def auto_search(name):
|
| 48 |
+
save_music_path = '/tmp/downloaded'
|
| 49 |
+
if not os.path.exists(save_music_path):
|
| 50 |
+
os.makedirs(save_music_path)
|
| 51 |
+
|
| 52 |
+
config = {'logfilepath': 'musicdl.log', save_music_path: save_music_path, 'search_size_per_source': 5,
|
| 53 |
+
'proxies': {}}
|
| 54 |
+
save_path = os.path.join(save_music_path, name + '.mp3')
|
| 55 |
+
# youtube
|
| 56 |
+
get_youtube(name, os.path.join(save_music_path, name))
|
| 57 |
+
# task1 = threading.Thread(
|
| 58 |
+
# target=get_youtube,
|
| 59 |
+
# args=(name, os.path.join(save_music_path, name))
|
| 60 |
+
# )
|
| 61 |
+
# task1.start()
|
| 62 |
+
# task2 = threading.Thread(
|
| 63 |
+
# target=download_random,
|
| 64 |
+
# args=(name, config, save_path)
|
| 65 |
+
# )
|
| 66 |
+
# task2.start()
|
| 67 |
+
# task1.join(timeout=20)
|
| 68 |
+
# task2.join(timeout=10)
|
| 69 |
+
|
| 70 |
+
if not os.path.exists(save_path):
|
| 71 |
+
return "Not Found", None
|
| 72 |
+
signal, sampling_rate = soundfile.read(save_path, dtype=np.int16)
|
| 73 |
+
# signal, sampling_rate = open_audio(save_path)
|
| 74 |
+
|
| 75 |
+
return (sampling_rate, signal)
|
| 76 |
+
|
| 77 |
+
# SadTalker
|
| 78 |
+
|
| 79 |
+
import os, sys
|
| 80 |
+
from src.gradio_demo import SadTalker
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
try:
|
| 84 |
+
import webui # in webui
|
| 85 |
+
in_webui = True
|
| 86 |
+
except:
|
| 87 |
+
in_webui = False
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
def toggle_audio_file(choice):
|
| 91 |
+
if choice == False:
|
| 92 |
+
return gr.update(visible=True), gr.update(visible=False)
|
| 93 |
+
else:
|
| 94 |
+
return gr.update(visible=False), gr.update(visible=True)
|
| 95 |
+
|
| 96 |
+
def ref_video_fn(path_of_ref_video):
|
| 97 |
+
if path_of_ref_video is not None:
|
| 98 |
+
return gr.update(value=True)
|
| 99 |
+
else:
|
| 100 |
+
return gr.update(value=False)
|
| 101 |
+
|
| 102 |
+
sad_talker = SadTalker("checkpoints", "src/config", lazy_load=True)
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
# combine video with music
|
| 107 |
+
|
| 108 |
+
def combine_music(video, audio):
|
| 109 |
+
my_clip = mpe.VideoFileClip(video)
|
| 110 |
+
audio_background = mpe.AudioFileClip(audio)
|
| 111 |
+
final_audio = mpe.CompositeAudioClip([my_clip.audio, audio_background])
|
| 112 |
+
final_clip = my_clip.set_audio(final_audio)
|
| 113 |
+
final_clip.write_videofile("video.mp4")
|
| 114 |
+
return "video.mp4"
|
| 115 |
+
|
| 116 |
+
# Reference: https://huggingface.co/spaces/zomehwh/rvc-models/blob/main/app.py#L21 # noqa
|
| 117 |
+
in_hf_space = getenv('SYSTEM') == 'spaces'
|
| 118 |
+
|
| 119 |
+
high_quality = True
|
| 120 |
+
|
| 121 |
+
# Argument parsing
|
| 122 |
+
arg_parser = ArgumentParser()
|
| 123 |
+
arg_parser.add_argument(
|
| 124 |
+
'--hubert',
|
| 125 |
+
default=getenv('RVC_HUBERT', 'hubert_base.pt'),
|
| 126 |
+
help='path to hubert base model (default: hubert_base.pt)'
|
| 127 |
+
)
|
| 128 |
+
arg_parser.add_argument(
|
| 129 |
+
'--config',
|
| 130 |
+
default=getenv('RVC_MULTI_CFG', 'multi_config.json'),
|
| 131 |
+
help='path to config file (default: multi_config.json)'
|
| 132 |
+
)
|
| 133 |
+
arg_parser.add_argument(
|
| 134 |
+
'--api',
|
| 135 |
+
action='store_true',
|
| 136 |
+
help='enable api endpoint'
|
| 137 |
+
)
|
| 138 |
+
arg_parser.add_argument(
|
| 139 |
+
'--cache-examples',
|
| 140 |
+
action='store_true',
|
| 141 |
+
help='enable example caching, please remember delete gradio_cached_examples folder when example config has been modified' # noqa
|
| 142 |
+
)
|
| 143 |
+
args = arg_parser.parse_args()
|
| 144 |
+
|
| 145 |
+
app_css = '''
|
| 146 |
+
#model_info img {
|
| 147 |
+
max-width: 100px;
|
| 148 |
+
max-height: 100px;
|
| 149 |
+
float: right;
|
| 150 |
+
}
|
| 151 |
+
|
| 152 |
+
#model_info p {
|
| 153 |
+
margin: unset;
|
| 154 |
+
}
|
| 155 |
+
'''
|
| 156 |
+
|
| 157 |
+
app = gr.Blocks(
|
| 158 |
+
theme=gr.themes.Soft(primary_hue="orange", secondary_hue="slate"),
|
| 159 |
+
css=app_css,
|
| 160 |
+
analytics_enabled=False
|
| 161 |
+
)
|
| 162 |
+
|
| 163 |
+
# Load hubert model
|
| 164 |
+
hubert_model = util.load_hubert_model(config.device, args.hubert)
|
| 165 |
+
hubert_model.eval()
|
| 166 |
+
|
| 167 |
+
# Load models
|
| 168 |
+
multi_cfg = json.load(open(args.config, 'r'))
|
| 169 |
+
loaded_models = []
|
| 170 |
+
|
| 171 |
+
for model_name in multi_cfg.get('models'):
|
| 172 |
+
print(f'Loading model: {model_name}')
|
| 173 |
+
|
| 174 |
+
# Load model info
|
| 175 |
+
model_info = json.load(
|
| 176 |
+
open(path.join('model', model_name, 'config.json'), 'r')
|
| 177 |
+
)
|
| 178 |
+
|
| 179 |
+
# Load RVC checkpoint
|
| 180 |
+
cpt = torch.load(
|
| 181 |
+
path.join('model', model_name, model_info['model']),
|
| 182 |
+
map_location='cpu'
|
| 183 |
+
)
|
| 184 |
+
tgt_sr = cpt['config'][-1]
|
| 185 |
+
cpt['config'][-3] = cpt['weight']['emb_g.weight'].shape[0] # n_spk
|
| 186 |
+
|
| 187 |
+
if_f0 = cpt.get('f0', 1)
|
| 188 |
+
net_g: Union[SynthesizerTrnMs768NSFsid, SynthesizerTrnMs768NSFsid_nono]
|
| 189 |
+
if if_f0 == 1:
|
| 190 |
+
net_g = SynthesizerTrnMs768NSFsid(
|
| 191 |
+
*cpt['config'],
|
| 192 |
+
is_half=util.is_half(config.device)
|
| 193 |
+
)
|
| 194 |
+
else:
|
| 195 |
+
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt['config'])
|
| 196 |
+
|
| 197 |
+
del net_g.enc_q
|
| 198 |
+
|
| 199 |
+
# According to original code, this thing seems necessary.
|
| 200 |
+
print(net_g.load_state_dict(cpt['weight'], strict=False))
|
| 201 |
+
|
| 202 |
+
net_g.eval().to(config.device)
|
| 203 |
+
net_g = net_g.half() if util.is_half(config.device) else net_g.float()
|
| 204 |
+
|
| 205 |
+
vc = VC(tgt_sr, config)
|
| 206 |
+
|
| 207 |
+
loaded_models.append(dict(
|
| 208 |
+
name=model_name,
|
| 209 |
+
metadata=model_info,
|
| 210 |
+
vc=vc,
|
| 211 |
+
net_g=net_g,
|
| 212 |
+
if_f0=if_f0,
|
| 213 |
+
target_sr=tgt_sr
|
| 214 |
+
))
|
| 215 |
+
|
| 216 |
+
print(f'Models loaded: {len(loaded_models)}')
|
| 217 |
+
|
| 218 |
+
# Edge TTS speakers
|
| 219 |
+
tts_speakers_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices()) # noqa
|
| 220 |
+
|
| 221 |
+
# Make MV
|
| 222 |
+
def make_bars_image(height_values, index, new_height):
|
| 223 |
+
|
| 224 |
+
# Define the size of the image
|
| 225 |
+
width = 512
|
| 226 |
+
height = new_height
|
| 227 |
+
|
| 228 |
+
# Create a new image with a transparent background
|
| 229 |
+
image = Image.new('RGBA', (width, height), color=(0, 0, 0, 0))
|
| 230 |
+
|
| 231 |
+
# Get the image drawing context
|
| 232 |
+
draw = ImageDraw.Draw(image)
|
| 233 |
+
|
| 234 |
+
# Define the rectangle width and spacing
|
| 235 |
+
rect_width = 2
|
| 236 |
+
spacing = 2
|
| 237 |
+
|
| 238 |
+
# Define the list of height values for the rectangles
|
| 239 |
+
#height_values = [20, 40, 60, 80, 100, 80, 60, 40]
|
| 240 |
+
num_bars = len(height_values)
|
| 241 |
+
# Calculate the total width of the rectangles and the spacing
|
| 242 |
+
total_width = num_bars * rect_width + (num_bars - 1) * spacing
|
| 243 |
+
|
| 244 |
+
# Calculate the starting position for the first rectangle
|
| 245 |
+
start_x = int((width - total_width) / 2)
|
| 246 |
+
# Define the buffer size
|
| 247 |
+
buffer_size = 80
|
| 248 |
+
# Draw the rectangles from left to right
|
| 249 |
+
x = start_x
|
| 250 |
+
for i, height in enumerate(height_values):
|
| 251 |
+
|
| 252 |
+
# Define the rectangle coordinates
|
| 253 |
+
y0 = buffer_size
|
| 254 |
+
y1 = height + buffer_size
|
| 255 |
+
x0 = x
|
| 256 |
+
x1 = x + rect_width
|
| 257 |
+
|
| 258 |
+
# Draw the rectangle
|
| 259 |
+
draw.rectangle([x0, y0, x1, y1], fill='white')
|
| 260 |
+
|
| 261 |
+
# Move to the next rectangle position
|
| 262 |
+
if i < num_bars - 1:
|
| 263 |
+
x += rect_width + spacing
|
| 264 |
+
|
| 265 |
+
|
| 266 |
+
# Rotate the image by 180 degrees
|
| 267 |
+
image = image.rotate(180)
|
| 268 |
+
|
| 269 |
+
# Mirror the image
|
| 270 |
+
image = image.transpose(Image.FLIP_LEFT_RIGHT)
|
| 271 |
+
|
| 272 |
+
# Save the image
|
| 273 |
+
image.save('audio_bars_'+ str(index) + '.png')
|
| 274 |
+
|
| 275 |
+
return 'audio_bars_'+ str(index) + '.png'
|
| 276 |
+
|
| 277 |
+
def db_to_height(db_value):
|
| 278 |
+
# Scale the dB value to a range between 0 and 1
|
| 279 |
+
scaled_value = (db_value + 80) / 80
|
| 280 |
+
|
| 281 |
+
# Convert the scaled value to a height between 0 and 100
|
| 282 |
+
height = scaled_value * 50
|
| 283 |
+
|
| 284 |
+
return height
|
| 285 |
+
|
| 286 |
+
def infer(title, audio_in, image_in):
|
| 287 |
+
# Load the audio file
|
| 288 |
+
audio_path = audio_in
|
| 289 |
+
audio_data, sr = librosa.load(audio_path)
|
| 290 |
+
|
| 291 |
+
# Get the duration in seconds
|
| 292 |
+
duration = librosa.get_duration(y=audio_data, sr=sr)
|
| 293 |
+
|
| 294 |
+
# Extract the audio data for the desired time
|
| 295 |
+
start_time = 0 # start time in seconds
|
| 296 |
+
end_time = duration # end time in seconds
|
| 297 |
+
|
| 298 |
+
start_index = int(start_time * sr)
|
| 299 |
+
end_index = int(end_time * sr)
|
| 300 |
+
|
| 301 |
+
audio_data = audio_data[start_index:end_index]
|
| 302 |
+
|
| 303 |
+
# Compute the short-time Fourier transform
|
| 304 |
+
hop_length = 512
|
| 305 |
+
|
| 306 |
+
|
| 307 |
+
stft = librosa.stft(audio_data, hop_length=hop_length)
|
| 308 |
+
spectrogram = librosa.amplitude_to_db(np.abs(stft), ref=np.max)
|
| 309 |
+
|
| 310 |
+
# Get the frequency values
|
| 311 |
+
freqs = librosa.fft_frequencies(sr=sr, n_fft=stft.shape[0])
|
| 312 |
+
|
| 313 |
+
# Select the indices of the frequency values that correspond to the desired frequencies
|
| 314 |
+
n_freqs = 114
|
| 315 |
+
freq_indices = np.linspace(0, len(freqs) - 1, n_freqs, dtype=int)
|
| 316 |
+
|
| 317 |
+
# Extract the dB values for the desired frequencies
|
| 318 |
+
db_values = []
|
| 319 |
+
for i in range(spectrogram.shape[1]):
|
| 320 |
+
db_values.append(list(zip(freqs[freq_indices], spectrogram[freq_indices, i])))
|
| 321 |
+
|
| 322 |
+
# Print the dB values for the first time frame
|
| 323 |
+
print(db_values[0])
|
| 324 |
+
|
| 325 |
+
proportional_values = []
|
| 326 |
+
|
| 327 |
+
for frame in db_values:
|
| 328 |
+
proportional_frame = [db_to_height(db) for f, db in frame]
|
| 329 |
+
proportional_values.append(proportional_frame)
|
| 330 |
+
|
| 331 |
+
print(proportional_values[0])
|
| 332 |
+
print("AUDIO CHUNK: " + str(len(proportional_values)))
|
| 333 |
+
|
| 334 |
+
# Open the background image
|
| 335 |
+
background_image = Image.open(image_in)
|
| 336 |
+
|
| 337 |
+
# Resize the image while keeping its aspect ratio
|
| 338 |
+
bg_width, bg_height = background_image.size
|
| 339 |
+
aspect_ratio = bg_width / bg_height
|
| 340 |
+
new_width = 512
|
| 341 |
+
new_height = int(new_width / aspect_ratio)
|
| 342 |
+
resized_bg = background_image.resize((new_width, new_height))
|
| 343 |
+
|
| 344 |
+
# Apply black cache for better visibility of the white text
|
| 345 |
+
bg_cache = Image.open('black_cache.png')
|
| 346 |
+
resized_bg.paste(bg_cache, (0, resized_bg.height - bg_cache.height), mask=bg_cache)
|
| 347 |
+
|
| 348 |
+
# Create a new ImageDraw object
|
| 349 |
+
draw = ImageDraw.Draw(resized_bg)
|
| 350 |
+
|
| 351 |
+
# Define the text to be added
|
| 352 |
+
text = title
|
| 353 |
+
font = ImageFont.truetype("NotoSansSC-Regular.otf", 16)
|
| 354 |
+
text_color = (255, 255, 255) # white color
|
| 355 |
+
|
| 356 |
+
# Calculate the position of the text
|
| 357 |
+
text_width, text_height = draw.textsize(text, font=font)
|
| 358 |
+
x = 30
|
| 359 |
+
y = new_height - 70
|
| 360 |
+
|
| 361 |
+
# Draw the text on the image
|
| 362 |
+
draw.text((x, y), text, fill=text_color, font=font)
|
| 363 |
+
|
| 364 |
+
# Save the resized image
|
| 365 |
+
resized_bg.save('resized_background.jpg')
|
| 366 |
+
|
| 367 |
+
generated_frames = []
|
| 368 |
+
for i, frame in enumerate(proportional_values):
|
| 369 |
+
bars_img = make_bars_image(frame, i, new_height)
|
| 370 |
+
bars_img = Image.open(bars_img)
|
| 371 |
+
# Paste the audio bars image on top of the background image
|
| 372 |
+
fresh_bg = Image.open('resized_background.jpg')
|
| 373 |
+
fresh_bg.paste(bars_img, (0, 0), mask=bars_img)
|
| 374 |
+
# Save the image
|
| 375 |
+
fresh_bg.save('audio_bars_with_bg' + str(i) + '.jpg')
|
| 376 |
+
generated_frames.append('audio_bars_with_bg' + str(i) + '.jpg')
|
| 377 |
+
print(generated_frames)
|
| 378 |
+
|
| 379 |
+
# Create a video clip from the images
|
| 380 |
+
clip = ImageSequenceClip(generated_frames, fps=len(generated_frames)/(end_time-start_time))
|
| 381 |
+
audio_clip = AudioFileClip(audio_in)
|
| 382 |
+
clip = clip.set_audio(audio_clip)
|
| 383 |
+
# Set the output codec
|
| 384 |
+
codec = 'libx264'
|
| 385 |
+
audio_codec = 'aac'
|
| 386 |
+
# Save the video to a file
|
| 387 |
+
clip.write_videofile("my_video.mp4", codec=codec, audio_codec=audio_codec)
|
| 388 |
+
|
| 389 |
+
retimed_clip = VideoFileClip("my_video.mp4")
|
| 390 |
+
|
| 391 |
+
# Set the desired frame rate
|
| 392 |
+
new_fps = 25
|
| 393 |
+
|
| 394 |
+
# Create a new clip with the new frame rate
|
| 395 |
+
new_clip = retimed_clip.set_fps(new_fps)
|
| 396 |
+
|
| 397 |
+
# Save the new clip as a new video file
|
| 398 |
+
new_clip.write_videofile("my_video_retimed.mp4", codec=codec, audio_codec=audio_codec)
|
| 399 |
+
|
| 400 |
+
return "my_video_retimed.mp4"
|
| 401 |
+
|
| 402 |
+
# mix vocal and non-vocal
|
| 403 |
+
def mix(audio1, audio2):
|
| 404 |
+
sound1 = AudioSegment.from_file(audio1)
|
| 405 |
+
sound2 = AudioSegment.from_file(audio2)
|
| 406 |
+
length = len(sound1)
|
| 407 |
+
mixed = sound1[:length].overlay(sound2)
|
| 408 |
+
|
| 409 |
+
mixed.export("song.wav", format="wav")
|
| 410 |
+
|
| 411 |
+
return "song.wav"
|
| 412 |
+
|
| 413 |
+
# Bilibili
|
| 414 |
+
def youtube_downloader(
|
| 415 |
+
video_identifier,
|
| 416 |
+
start_time,
|
| 417 |
+
end_time,
|
| 418 |
+
is_full_song,
|
| 419 |
+
output_filename="track.wav",
|
| 420 |
+
num_attempts=5,
|
| 421 |
+
url_base="",
|
| 422 |
+
quiet=False,
|
| 423 |
+
force=True,
|
| 424 |
+
):
|
| 425 |
+
if is_full_song:
|
| 426 |
+
ydl_opts = {
|
| 427 |
+
'noplaylist': True,
|
| 428 |
+
'format': 'bestaudio/best',
|
| 429 |
+
'postprocessors': [{
|
| 430 |
+
'key': 'FFmpegExtractAudio',
|
| 431 |
+
'preferredcodec': 'wav',
|
| 432 |
+
}],
|
| 433 |
+
"outtmpl": 'dl_audio/youtube_audio',
|
| 434 |
+
}
|
| 435 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
| 436 |
+
ydl.download([video_identifier])
|
| 437 |
+
audio_path = "dl_audio/youtube_audio.wav"
|
| 438 |
+
return audio_path
|
| 439 |
+
|
| 440 |
+
else:
|
| 441 |
+
output_path = Path(output_filename)
|
| 442 |
+
if output_path.exists():
|
| 443 |
+
if not force:
|
| 444 |
+
return output_path
|
| 445 |
+
else:
|
| 446 |
+
output_path.unlink()
|
| 447 |
+
|
| 448 |
+
quiet = "--quiet --no-warnings" if quiet else ""
|
| 449 |
+
command = f"""
|
| 450 |
+
yt-dlp {quiet} -x --audio-format wav -f bestaudio -o "{output_filename}" --download-sections "*{start_time}-{end_time}" "{url_base}{video_identifier}" # noqa: E501
|
| 451 |
+
""".strip()
|
| 452 |
+
|
| 453 |
+
attempts = 0
|
| 454 |
+
while True:
|
| 455 |
+
try:
|
| 456 |
+
_ = subprocess.check_output(command, shell=True, stderr=subprocess.STDOUT)
|
| 457 |
+
except subprocess.CalledProcessError:
|
| 458 |
+
attempts += 1
|
| 459 |
+
if attempts == num_attempts:
|
| 460 |
+
return None
|
| 461 |
+
else:
|
| 462 |
+
break
|
| 463 |
+
|
| 464 |
+
if output_path.exists():
|
| 465 |
+
return output_path
|
| 466 |
+
else:
|
| 467 |
+
return None
|
| 468 |
+
|
| 469 |
+
def audio_separated(audio_input, progress=gr.Progress()):
|
| 470 |
+
# start progress
|
| 471 |
+
progress(progress=0, desc="Starting...")
|
| 472 |
+
time.sleep(0.1)
|
| 473 |
+
|
| 474 |
+
# check file input
|
| 475 |
+
if audio_input is None:
|
| 476 |
+
# show progress
|
| 477 |
+
for i in progress.tqdm(range(100), desc="Please wait..."):
|
| 478 |
+
time.sleep(0.01)
|
| 479 |
+
|
| 480 |
+
return (None, None, 'Please input audio.')
|
| 481 |
+
|
| 482 |
+
# create filename
|
| 483 |
+
filename = str(random.randint(10000,99999))+datetime.now().strftime("%d%m%Y%H%M%S")
|
| 484 |
+
|
| 485 |
+
# progress
|
| 486 |
+
progress(progress=0.10, desc="Please wait...")
|
| 487 |
+
|
| 488 |
+
# make dir output
|
| 489 |
+
os.makedirs("output", exist_ok=True)
|
| 490 |
+
|
| 491 |
+
# progress
|
| 492 |
+
progress(progress=0.20, desc="Please wait...")
|
| 493 |
+
|
| 494 |
+
# write
|
| 495 |
+
if high_quality:
|
| 496 |
+
write(filename+".wav", audio_input[0], audio_input[1])
|
| 497 |
+
else:
|
| 498 |
+
write(filename+".mp3", audio_input[0], audio_input[1])
|
| 499 |
+
|
| 500 |
+
# progress
|
| 501 |
+
progress(progress=0.50, desc="Please wait...")
|
| 502 |
+
|
| 503 |
+
# demucs process
|
| 504 |
+
if high_quality:
|
| 505 |
+
command_demucs = "python3 -m demucs --two-stems=vocals -d cpu "+filename+".wav -o output"
|
| 506 |
+
else:
|
| 507 |
+
command_demucs = "python3 -m demucs --two-stems=vocals --mp3 --mp3-bitrate 128 -d cpu "+filename+".mp3 -o output"
|
| 508 |
+
|
| 509 |
+
os.system(command_demucs)
|
| 510 |
+
|
| 511 |
+
# progress
|
| 512 |
+
progress(progress=0.70, desc="Please wait...")
|
| 513 |
+
|
| 514 |
+
# remove file audio
|
| 515 |
+
if high_quality:
|
| 516 |
+
command_delete = "rm -v ./"+filename+".wav"
|
| 517 |
+
else:
|
| 518 |
+
command_delete = "rm -v ./"+filename+".mp3"
|
| 519 |
+
|
| 520 |
+
os.system(command_delete)
|
| 521 |
+
|
| 522 |
+
# progress
|
| 523 |
+
progress(progress=0.80, desc="Please wait...")
|
| 524 |
+
|
| 525 |
+
# progress
|
| 526 |
+
for i in progress.tqdm(range(80,100), desc="Please wait..."):
|
| 527 |
+
time.sleep(0.1)
|
| 528 |
+
|
| 529 |
+
if high_quality:
|
| 530 |
+
return "./output/htdemucs/"+filename+"/vocals.wav","./output/htdemucs/"+filename+"/no_vocals.wav","Successfully..."
|
| 531 |
+
else:
|
| 532 |
+
return "./output/htdemucs/"+filename+"/vocals.mp3","./output/htdemucs/"+filename+"/no_vocals.mp3","Successfully..."
|
| 533 |
+
|
| 534 |
+
|
| 535 |
+
# https://github.com/fumiama/Retrieval-based-Voice-Conversion-WebUI/blob/main/infer-web.py#L118 # noqa
|
| 536 |
+
def vc_func(
|
| 537 |
+
input_audio, model_index, pitch_adjust, f0_method, feat_ratio,
|
| 538 |
+
filter_radius, rms_mix_rate, resample_option
|
| 539 |
+
):
|
| 540 |
+
if input_audio is None:
|
| 541 |
+
return (None, 'Please provide input audio.')
|
| 542 |
+
|
| 543 |
+
if model_index is None:
|
| 544 |
+
return (None, 'Please select a model.')
|
| 545 |
+
|
| 546 |
+
model = loaded_models[model_index]
|
| 547 |
+
|
| 548 |
+
# Reference: so-vits
|
| 549 |
+
(audio_samp, audio_npy) = input_audio
|
| 550 |
+
|
| 551 |
+
# https://huggingface.co/spaces/zomehwh/rvc-models/blob/main/app.py#L49
|
| 552 |
+
# Can be change well, we will see
|
| 553 |
+
if (audio_npy.shape[0] / audio_samp) > 600 and in_hf_space:
|
| 554 |
+
return (None, 'Input audio is longer than 600 secs.')
|
| 555 |
+
|
| 556 |
+
# Bloody hell: https://stackoverflow.com/questions/26921836/
|
| 557 |
+
if audio_npy.dtype != np.float32: # :thonk:
|
| 558 |
+
audio_npy = (
|
| 559 |
+
audio_npy / np.iinfo(audio_npy.dtype).max
|
| 560 |
+
).astype(np.float32)
|
| 561 |
+
|
| 562 |
+
if len(audio_npy.shape) > 1:
|
| 563 |
+
audio_npy = librosa.to_mono(audio_npy.transpose(1, 0))
|
| 564 |
+
|
| 565 |
+
if audio_samp != 16000:
|
| 566 |
+
audio_npy = librosa.resample(
|
| 567 |
+
audio_npy,
|
| 568 |
+
orig_sr=audio_samp,
|
| 569 |
+
target_sr=16000
|
| 570 |
+
)
|
| 571 |
+
|
| 572 |
+
pitch_int = int(pitch_adjust)
|
| 573 |
+
|
| 574 |
+
resample = (
|
| 575 |
+
0 if resample_option == 'Disable resampling'
|
| 576 |
+
else int(resample_option)
|
| 577 |
+
)
|
| 578 |
+
|
| 579 |
+
times = [0, 0, 0]
|
| 580 |
+
|
| 581 |
+
checksum = hashlib.sha512()
|
| 582 |
+
checksum.update(audio_npy.tobytes())
|
| 583 |
+
|
| 584 |
+
output_audio = model['vc'].pipeline(
|
| 585 |
+
hubert_model,
|
| 586 |
+
model['net_g'],
|
| 587 |
+
model['metadata'].get('speaker_id', 0),
|
| 588 |
+
audio_npy,
|
| 589 |
+
checksum.hexdigest(),
|
| 590 |
+
times,
|
| 591 |
+
pitch_int,
|
| 592 |
+
f0_method,
|
| 593 |
+
path.join('model', model['name'], model['metadata']['feat_index']),
|
| 594 |
+
feat_ratio,
|
| 595 |
+
model['if_f0'],
|
| 596 |
+
filter_radius,
|
| 597 |
+
model['target_sr'],
|
| 598 |
+
resample,
|
| 599 |
+
rms_mix_rate,
|
| 600 |
+
'v2'
|
| 601 |
+
)
|
| 602 |
+
|
| 603 |
+
out_sr = (
|
| 604 |
+
resample if resample >= 16000 and model['target_sr'] != resample
|
| 605 |
+
else model['target_sr']
|
| 606 |
+
)
|
| 607 |
+
|
| 608 |
+
print(f'npy: {times[0]}s, f0: {times[1]}s, infer: {times[2]}s')
|
| 609 |
+
return ((out_sr, output_audio), 'Success')
|
| 610 |
+
|
| 611 |
+
|
| 612 |
+
async def edge_tts_vc_func(
|
| 613 |
+
input_text, model_index, tts_speaker, pitch_adjust, f0_method, feat_ratio,
|
| 614 |
+
filter_radius, rms_mix_rate, resample_option
|
| 615 |
+
):
|
| 616 |
+
if input_text is None:
|
| 617 |
+
return (None, 'Please provide TTS text.')
|
| 618 |
+
|
| 619 |
+
if tts_speaker is None:
|
| 620 |
+
return (None, 'Please select TTS speaker.')
|
| 621 |
+
|
| 622 |
+
if model_index is None:
|
| 623 |
+
return (None, 'Please select a model.')
|
| 624 |
+
|
| 625 |
+
speaker = tts_speakers_list[tts_speaker]['ShortName']
|
| 626 |
+
(tts_np, tts_sr) = await util.call_edge_tts(speaker, input_text)
|
| 627 |
+
return vc_func(
|
| 628 |
+
(tts_sr, tts_np),
|
| 629 |
+
model_index,
|
| 630 |
+
pitch_adjust,
|
| 631 |
+
f0_method,
|
| 632 |
+
feat_ratio,
|
| 633 |
+
filter_radius,
|
| 634 |
+
rms_mix_rate,
|
| 635 |
+
resample_option
|
| 636 |
+
)
|
| 637 |
+
|
| 638 |
+
|
| 639 |
+
def update_model_info(model_index):
|
| 640 |
+
if model_index is None:
|
| 641 |
+
return str(
|
| 642 |
+
'### Model info\n'
|
| 643 |
+
'Please select a model from dropdown above.'
|
| 644 |
+
)
|
| 645 |
+
|
| 646 |
+
model = loaded_models[model_index]
|
| 647 |
+
model_icon = model['metadata'].get('icon', '')
|
| 648 |
+
|
| 649 |
+
return str(
|
| 650 |
+
'### Model info\n'
|
| 651 |
+
''
|
| 652 |
+
'**{name}**\n\n'
|
| 653 |
+
'Author: {author}\n\n'
|
| 654 |
+
'Source: {source}\n\n'
|
| 655 |
+
'{note}'
|
| 656 |
+
).format(
|
| 657 |
+
name=model['metadata'].get('name'),
|
| 658 |
+
author=model['metadata'].get('author', 'Anonymous'),
|
| 659 |
+
source=model['metadata'].get('source', 'Unknown'),
|
| 660 |
+
note=model['metadata'].get('note', ''),
|
| 661 |
+
icon=(
|
| 662 |
+
model_icon
|
| 663 |
+
if model_icon.startswith(('http://', 'https://'))
|
| 664 |
+
else '/file/model/%s/%s' % (model['name'], model_icon)
|
| 665 |
+
)
|
| 666 |
+
)
|
| 667 |
+
|
| 668 |
+
|
| 669 |
+
def _example_vc(
|
| 670 |
+
input_audio, model_index, pitch_adjust, f0_method, feat_ratio,
|
| 671 |
+
filter_radius, rms_mix_rate, resample_option
|
| 672 |
+
):
|
| 673 |
+
(audio, message) = vc_func(
|
| 674 |
+
input_audio, model_index, pitch_adjust, f0_method, feat_ratio,
|
| 675 |
+
filter_radius, rms_mix_rate, resample_option
|
| 676 |
+
)
|
| 677 |
+
return (
|
| 678 |
+
audio,
|
| 679 |
+
message,
|
| 680 |
+
update_model_info(model_index)
|
| 681 |
+
)
|
| 682 |
+
|
| 683 |
+
|
| 684 |
+
async def _example_edge_tts(
|
| 685 |
+
input_text, model_index, tts_speaker, pitch_adjust, f0_method, feat_ratio,
|
| 686 |
+
filter_radius, rms_mix_rate, resample_option
|
| 687 |
+
):
|
| 688 |
+
(audio, message) = await edge_tts_vc_func(
|
| 689 |
+
input_text, model_index, tts_speaker, pitch_adjust, f0_method,
|
| 690 |
+
feat_ratio, filter_radius, rms_mix_rate, resample_option
|
| 691 |
+
)
|
| 692 |
+
return (
|
| 693 |
+
audio,
|
| 694 |
+
message,
|
| 695 |
+
update_model_info(model_index)
|
| 696 |
+
)
|
| 697 |
+
|
| 698 |
+
|
| 699 |
+
with app:
|
| 700 |
+
gr.HTML("<center>"
|
| 701 |
+
"<h1>🥳🎶🎡 - AI歌手数字人+RVC最新算法</h1>"
|
| 702 |
+
"</center>")
|
| 703 |
+
gr.Markdown("### <center>🌊 - 身临其境般的AI音乐体验,AI歌手“想把我唱给你听”;Powered by [RVC-Project](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI)</center>")
|
| 704 |
+
gr.Markdown("### <center>更多精彩应用,敬请关注[滔滔AI](http://www.talktalkai.com);滔滔AI,为爱滔滔!💕</center>")
|
| 705 |
+
|
| 706 |
+
with gr.Tab("🤗 - 轻松提取音乐"):
|
| 707 |
+
with gr.Row():
|
| 708 |
+
with gr.Column():
|
| 709 |
+
ydl_url_input = gr.Textbox(label="音乐视频网址(可直接填写相应的BV号)", value = "https://www.bilibili.com/video/BV...")
|
| 710 |
+
with gr.Row():
|
| 711 |
+
start = gr.Number(value=0, label="起始时间 (秒)")
|
| 712 |
+
end = gr.Number(value=15, label="结束时间 (秒)")
|
| 713 |
+
check_full = gr.Checkbox(label="是否上传整首歌曲", info="若勾选则不需要填写起止时间", value=True)
|
| 714 |
+
with gr.Accordion('搜索歌曲名上传', open=False):
|
| 715 |
+
search_name = gr.Dropdown(label="通过歌曲名搜索", info="选一首您喜欢的歌曲吧", choices=["周杰伦晴天","周杰伦兰亭序","周杰伦七里香","周杰伦花海","周杰伦反方向的钟","周杰伦一路向北","周杰伦稻香","周杰伦明明就","周杰伦爱在西元前","孙燕姿逆光","陈奕迅富士山下","许嵩有何不可","薛之谦其实","邓紫棋光年之外","李荣浩年少有为"])
|
| 716 |
+
vc_search = gr.Button("用歌曲名来搜索吧")
|
| 717 |
+
|
| 718 |
+
ydl_url_submit = gr.Button("提取声音文件吧", variant="primary")
|
| 719 |
+
as_audio_submit = gr.Button("去除背景音吧", variant="primary")
|
| 720 |
+
with gr.Column():
|
| 721 |
+
ydl_audio_output = gr.Audio(label="歌曲原声")
|
| 722 |
+
as_audio_input = ydl_audio_output
|
| 723 |
+
as_audio_vocals = gr.Audio(label="歌曲人声部分")
|
| 724 |
+
as_audio_no_vocals = gr.Audio(label="歌曲伴奏部分", type="filepath")
|
| 725 |
+
as_audio_message = gr.Textbox(label="Message", visible=False)
|
| 726 |
+
|
| 727 |
+
vc_search.click(auto_search, [search_name], [ydl_audio_output])
|
| 728 |
+
ydl_url_submit.click(fn=youtube_downloader, inputs=[ydl_url_input, start, end, check_full], outputs=[ydl_audio_output])
|
| 729 |
+
as_audio_submit.click(fn=audio_separated, inputs=[as_audio_input], outputs=[as_audio_vocals, as_audio_no_vocals, as_audio_message], show_progress=True, queue=True)
|
| 730 |
+
|
| 731 |
+
with gr.Row():
|
| 732 |
+
with gr.Tab('🎶 - 歌声转换'):
|
| 733 |
+
with gr.Row():
|
| 734 |
+
with gr.Column():
|
| 735 |
+
input_audio = as_audio_vocals
|
| 736 |
+
vc_convert_btn = gr.Button('进行歌声转换吧!', variant='primary')
|
| 737 |
+
full_song = gr.Button("加入歌曲伴奏吧!", variant="primary")
|
| 738 |
+
new_song = gr.Audio(label="AI歌手+伴奏", type="filepath")
|
| 739 |
+
|
| 740 |
+
pitch_adjust = gr.Slider(
|
| 741 |
+
label='变调(默认为0;+2为升高两个key)',
|
| 742 |
+
minimum=-12,
|
| 743 |
+
maximum=12,
|
| 744 |
+
step=1,
|
| 745 |
+
value=0
|
| 746 |
+
)
|
| 747 |
+
f0_method = gr.Radio(
|
| 748 |
+
label='人声提取方法(pm时间更短;rmvpe效果更好)',
|
| 749 |
+
choices=['pm', 'rmvpe'],
|
| 750 |
+
value='pm',
|
| 751 |
+
interactive=True
|
| 752 |
+
)
|
| 753 |
+
|
| 754 |
+
with gr.Accordion('更多设置', open=False):
|
| 755 |
+
feat_ratio = gr.Slider(
|
| 756 |
+
label='Feature ratio',
|
| 757 |
+
minimum=0,
|
| 758 |
+
maximum=1,
|
| 759 |
+
step=0.1,
|
| 760 |
+
value=0.6,
|
| 761 |
+
visible=False
|
| 762 |
+
)
|
| 763 |
+
filter_radius = gr.Slider(
|
| 764 |
+
label='Filter radius',
|
| 765 |
+
minimum=0,
|
| 766 |
+
maximum=7,
|
| 767 |
+
step=1,
|
| 768 |
+
value=3,
|
| 769 |
+
visible=False
|
| 770 |
+
)
|
| 771 |
+
rms_mix_rate = gr.Slider(
|
| 772 |
+
label='Volume envelope mix rate',
|
| 773 |
+
minimum=0,
|
| 774 |
+
maximum=1,
|
| 775 |
+
step=0.1,
|
| 776 |
+
value=1,
|
| 777 |
+
visible=False
|
| 778 |
+
)
|
| 779 |
+
resample_rate = gr.Dropdown(
|
| 780 |
+
[
|
| 781 |
+
'Disable resampling',
|
| 782 |
+
'16000',
|
| 783 |
+
'22050',
|
| 784 |
+
'44100',
|
| 785 |
+
'48000'
|
| 786 |
+
],
|
| 787 |
+
label='是否更新采样率(默认为否)',
|
| 788 |
+
value='Disable resampling'
|
| 789 |
+
)
|
| 790 |
+
|
| 791 |
+
with gr.Column():
|
| 792 |
+
# Model select
|
| 793 |
+
model_index = gr.Dropdown(
|
| 794 |
+
[
|
| 795 |
+
'%s - %s' % (
|
| 796 |
+
m['metadata'].get('source', 'Unknown'),
|
| 797 |
+
m['metadata'].get('name')
|
| 798 |
+
)
|
| 799 |
+
for m in loaded_models
|
| 800 |
+
],
|
| 801 |
+
label='请选择您的AI歌手(必选)',
|
| 802 |
+
type='index'
|
| 803 |
+
)
|
| 804 |
+
|
| 805 |
+
# Model info
|
| 806 |
+
with gr.Box():
|
| 807 |
+
model_info = gr.Markdown(
|
| 808 |
+
'### AI歌手信息\n'
|
| 809 |
+
'Please select a model from dropdown above.',
|
| 810 |
+
elem_id='model_info'
|
| 811 |
+
)
|
| 812 |
+
|
| 813 |
+
output_audio = gr.Audio(label='AI歌手(无伴奏)', type="filepath")
|
| 814 |
+
output_msg = gr.Textbox(label='Output message', visible=False)
|
| 815 |
+
|
| 816 |
+
vc_convert_btn.click(
|
| 817 |
+
vc_func,
|
| 818 |
+
[
|
| 819 |
+
input_audio, model_index, pitch_adjust, f0_method, feat_ratio,
|
| 820 |
+
filter_radius, rms_mix_rate, resample_rate
|
| 821 |
+
],
|
| 822 |
+
[output_audio, output_msg],
|
| 823 |
+
api_name='audio_conversion'
|
| 824 |
+
)
|
| 825 |
+
|
| 826 |
+
full_song.click(fn=mix, inputs=[output_audio, as_audio_no_vocals], outputs=[new_song])
|
| 827 |
+
|
| 828 |
+
model_index.change(
|
| 829 |
+
update_model_info,
|
| 830 |
+
inputs=[model_index],
|
| 831 |
+
outputs=[model_info],
|
| 832 |
+
show_progress=False,
|
| 833 |
+
queue=False
|
| 834 |
+
)
|
| 835 |
+
|
| 836 |
+
with gr.Tab("📺 - 音乐视频"):
|
| 837 |
+
with gr.Row():
|
| 838 |
+
with gr.Column():
|
| 839 |
+
inp1 = gr.Textbox(label="为视频配上精彩的文案吧(选填)")
|
| 840 |
+
inp2 = new_song
|
| 841 |
+
inp3 = gr.Image(source='upload', type='filepath', label="上传一张背景图片吧")
|
| 842 |
+
btn = gr.Button("生成您的专属音乐视频吧", variant="primary")
|
| 843 |
+
|
| 844 |
+
with gr.Column():
|
| 845 |
+
out1 = gr.Video(label='您的专属音乐视频').style(width=512)
|
| 846 |
+
|
| 847 |
+
btn.click(fn=infer, inputs=[inp1, inp2, inp3], outputs=[out1])
|
| 848 |
+
|
| 849 |
+
with gr.Tab("🤵♀️ - AI歌手数字人"):
|
| 850 |
+
with gr.Row().style(equal_height=False):
|
| 851 |
+
with gr.Column(variant='panel'):
|
| 852 |
+
with gr.Tabs(elem_id="sadtalker_source_image"):
|
| 853 |
+
with gr.TabItem('图片上传'):
|
| 854 |
+
with gr.Row():
|
| 855 |
+
source_image = gr.Image(label="请上传一张您喜欢角色的图片", source="upload", type="filepath", elem_id="img2img_image").style(width=512)
|
| 856 |
+
|
| 857 |
+
with gr.Tabs(elem_id="sadtalker_driven_audio"):
|
| 858 |
+
with gr.TabItem('💕倾情演绎'):
|
| 859 |
+
with gr.Column(variant='panel'):
|
| 860 |
+
driven_audio = output_audio
|
| 861 |
+
|
| 862 |
+
submit = gr.Button('想把我唱给你听', elem_id="sadtalker_generate", variant='primary')
|
| 863 |
+
|
| 864 |
+
gen_mv = gr.Button('为视频添加伴奏吧', variant='primary')
|
| 865 |
+
|
| 866 |
+
with gr.Row():
|
| 867 |
+
|
| 868 |
+
gen_video = gr.Video(label="AI歌手数字人视频", format="mp4", interactive=False).style(width=256)
|
| 869 |
+
inp_mv_1 = gen_video
|
| 870 |
+
inp_mv_2 = as_audio_no_vocals
|
| 871 |
+
music_video = gr.Video(label="视频+伴奏", format="mp4").style(width=256)
|
| 872 |
+
|
| 873 |
+
with gr.Column(variant='panel'):
|
| 874 |
+
with gr.Tabs(elem_id="sadtalker_checkbox"):
|
| 875 |
+
with gr.TabItem('视频设置'):
|
| 876 |
+
with gr.Column(variant='panel'):
|
| 877 |
+
# width = gr.Slider(minimum=64, elem_id="img2img_width", maximum=2048, step=8, label="Manually Crop Width", value=512) # img2img_width
|
| 878 |
+
# height = gr.Slider(minimum=64, elem_id="img2img_height", maximum=2048, step=8, label="Manually Crop Height", value=512) # img2img_width
|
| 879 |
+
pose_style = gr.Slider(minimum=0, maximum=46, step=1, label="Pose style", value=0, visible=False) #
|
| 880 |
+
size_of_image = gr.Radio([256, 512], value=256, label='face model resolution', info="use 256/512 model?", visible=False) #
|
| 881 |
+
preprocess_type = gr.Radio(['crop', 'extfull'], value='crop', label='是否聚焦角色面部', info="crop:视频会聚焦角色面部;extfull:视频会显示图片全貌")
|
| 882 |
+
is_still_mode = gr.Checkbox(label="静态模式 (开启静态模式,角色的面部动作会减少;默认开启)", value=True, visible=False)
|
| 883 |
+
batch_size = gr.Slider(label="Batch size (数值越大,生成速度越快;若显卡性能好,可增大数值)", step=1, maximum=32, value=4)
|
| 884 |
+
enhancer = gr.Checkbox(label="GFPGAN as Face enhancer", visible=False)
|
| 885 |
+
|
| 886 |
+
|
| 887 |
+
submit.click(
|
| 888 |
+
fn=sad_talker.test,
|
| 889 |
+
inputs=[source_image,
|
| 890 |
+
driven_audio,
|
| 891 |
+
preprocess_type,
|
| 892 |
+
is_still_mode,
|
| 893 |
+
enhancer,
|
| 894 |
+
batch_size,
|
| 895 |
+
size_of_image,
|
| 896 |
+
pose_style
|
| 897 |
+
],
|
| 898 |
+
outputs=[gen_video]
|
| 899 |
+
)
|
| 900 |
+
|
| 901 |
+
gen_mv.click(fn=combine_music, inputs=[inp_mv_1, inp_mv_2], outputs=[music_video])
|
| 902 |
+
|
| 903 |
+
|
| 904 |
+
gr.Markdown("### <center>注意❗:请不要生成会对个人以及组织造成侵害的内容,此程序仅供科研、学习及个人娱乐使用。</center>")
|
| 905 |
+
gr.Markdown("<center>🧸 - 如何使用此程序:填写视频网址和视频起止时间后,依次点击“提取声音文件吧”、“去除背景音吧”、“进行歌声转换吧!”、“加入歌曲伴奏吧!”四个按键即可。</center>")
|
| 906 |
+
gr.HTML('''
|
| 907 |
+
<div class="footer">
|
| 908 |
+
<p>🌊🏞️🎶 - 江水东流急,滔滔无尽声。 明·顾璘
|
| 909 |
+
</p>
|
| 910 |
+
</div>
|
| 911 |
+
''')
|
| 912 |
+
|
| 913 |
+
app.queue(
|
| 914 |
+
concurrency_count=1,
|
| 915 |
+
max_size=20,
|
| 916 |
+
api_open=args.api
|
| 917 |
+
).launch(show_error=True)
|
black_cache.png
ADDED
|
checkpoints/SadTalker_V0.0.2_256.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c211f5d6de003516bf1bbda9f47049a4c9c99133b1ab565c6961e5af16477bff
|
| 3 |
+
size 725066984
|
checkpoints/SadTalker_V0.0.2_512.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0e063f7ff5258240bdb0f7690783a7b1374e6a4a81ce8fa33456f4cd49694340
|
| 3 |
+
size 725066984
|
checkpoints/mapping_00109-model.pth.tar
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:84a8642468a3fcfdd9ab6be955267043116c2bec2284686a5262f1eaf017f64c
|
| 3 |
+
size 155779231
|
checkpoints/mapping_00229-model.pth.tar
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:62a1e06006cc963220f6477438518ed86e9788226c62ae382ddc42fbcefb83f1
|
| 3 |
+
size 155521183
|
cog.yaml
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
build:
|
| 2 |
+
gpu: true
|
| 3 |
+
cuda: "11.3"
|
| 4 |
+
python_version: "3.8"
|
| 5 |
+
system_packages:
|
| 6 |
+
- "ffmpeg"
|
| 7 |
+
- "libgl1-mesa-glx"
|
| 8 |
+
- "libglib2.0-0"
|
| 9 |
+
python_packages:
|
| 10 |
+
- "torch==1.12.1"
|
| 11 |
+
- "torchvision==0.13.1"
|
| 12 |
+
- "torchaudio==0.12.1"
|
| 13 |
+
- "joblib==1.1.0"
|
| 14 |
+
- "scikit-image==0.19.3"
|
| 15 |
+
- "basicsr==1.4.2"
|
| 16 |
+
- "facexlib==0.3.0"
|
| 17 |
+
- "resampy==0.3.1"
|
| 18 |
+
- "pydub==0.25.1"
|
| 19 |
+
- "scipy==1.10.1"
|
| 20 |
+
- "kornia==0.6.8"
|
| 21 |
+
- "face_alignment==1.3.5"
|
| 22 |
+
- "imageio==2.19.3"
|
| 23 |
+
- "imageio-ffmpeg==0.4.7"
|
| 24 |
+
- "librosa==0.9.2" #
|
| 25 |
+
- "tqdm==4.65.0"
|
| 26 |
+
- "yacs==0.1.8"
|
| 27 |
+
- "gfpgan==1.3.8"
|
| 28 |
+
- "dlib-bin==19.24.1"
|
| 29 |
+
- "av==10.0.0"
|
| 30 |
+
- "trimesh==3.9.20"
|
| 31 |
+
run:
|
| 32 |
+
- mkdir -p /root/.cache/torch/hub/checkpoints/ && wget --output-document "/root/.cache/torch/hub/checkpoints/s3fd-619a316812.pth" "https://www.adrianbulat.com/downloads/python-fan/s3fd-619a316812.pth"
|
| 33 |
+
- mkdir -p /root/.cache/torch/hub/checkpoints/ && wget --output-document "/root/.cache/torch/hub/checkpoints/2DFAN4-cd938726ad.zip" "https://www.adrianbulat.com/downloads/python-fan/2DFAN4-cd938726ad.zip"
|
| 34 |
+
|
| 35 |
+
predict: "predict.py:Predictor"
|
config.py
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
|
| 3 |
+
import util
|
| 4 |
+
|
| 5 |
+
device = (
|
| 6 |
+
'cuda:0' if torch.cuda.is_available()
|
| 7 |
+
else (
|
| 8 |
+
'mps' if util.has_mps()
|
| 9 |
+
else 'cpu'
|
| 10 |
+
)
|
| 11 |
+
)
|
| 12 |
+
is_half = util.is_half(device)
|
| 13 |
+
|
| 14 |
+
x_pad = 3 if is_half else 1
|
| 15 |
+
x_query = 10 if is_half else 6
|
| 16 |
+
x_center = 60 if is_half else 38
|
| 17 |
+
x_max = 65 if is_half else 41
|
gfpgan/weights/GFPGANv1.4.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e2cd4703ab14f4d01fd1383a8a8b266f9a5833dacee8e6a79d3bf21a1b6be5ad
|
| 3 |
+
size 348632874
|
gfpgan/weights/alignment_WFLW_4HG.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bbfd137307a4c7debd5c283b9b0ce539466cee417ac0a155e184d857f9f2899c
|
| 3 |
+
size 193670248
|
gfpgan/weights/detection_Resnet50_Final.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6d1de9c2944f2ccddca5f5e010ea5ae64a39845a86311af6fdf30841b0a5a16d
|
| 3 |
+
size 109497761
|
gfpgan/weights/parsing_parsenet.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3d558d8d0e42c20224f13cf5a29c79eba2d59913419f945545d8cf7b72920de2
|
| 3 |
+
size 85331193
|
hubert_base.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f54b40fd2802423a5643779c4861af1e9ee9c1564dc9d32f54f20b5ffba7db96
|
| 3 |
+
size 189507909
|
infer_pack/attentions.py
ADDED
|
@@ -0,0 +1,417 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import copy
|
| 2 |
+
import math
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
from torch import nn
|
| 6 |
+
from torch.nn import functional as F
|
| 7 |
+
|
| 8 |
+
from infer_pack import commons
|
| 9 |
+
from infer_pack import modules
|
| 10 |
+
from infer_pack.modules import LayerNorm
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class Encoder(nn.Module):
|
| 14 |
+
def __init__(
|
| 15 |
+
self,
|
| 16 |
+
hidden_channels,
|
| 17 |
+
filter_channels,
|
| 18 |
+
n_heads,
|
| 19 |
+
n_layers,
|
| 20 |
+
kernel_size=1,
|
| 21 |
+
p_dropout=0.0,
|
| 22 |
+
window_size=10,
|
| 23 |
+
**kwargs
|
| 24 |
+
):
|
| 25 |
+
super().__init__()
|
| 26 |
+
self.hidden_channels = hidden_channels
|
| 27 |
+
self.filter_channels = filter_channels
|
| 28 |
+
self.n_heads = n_heads
|
| 29 |
+
self.n_layers = n_layers
|
| 30 |
+
self.kernel_size = kernel_size
|
| 31 |
+
self.p_dropout = p_dropout
|
| 32 |
+
self.window_size = window_size
|
| 33 |
+
|
| 34 |
+
self.drop = nn.Dropout(p_dropout)
|
| 35 |
+
self.attn_layers = nn.ModuleList()
|
| 36 |
+
self.norm_layers_1 = nn.ModuleList()
|
| 37 |
+
self.ffn_layers = nn.ModuleList()
|
| 38 |
+
self.norm_layers_2 = nn.ModuleList()
|
| 39 |
+
for i in range(self.n_layers):
|
| 40 |
+
self.attn_layers.append(
|
| 41 |
+
MultiHeadAttention(
|
| 42 |
+
hidden_channels,
|
| 43 |
+
hidden_channels,
|
| 44 |
+
n_heads,
|
| 45 |
+
p_dropout=p_dropout,
|
| 46 |
+
window_size=window_size,
|
| 47 |
+
)
|
| 48 |
+
)
|
| 49 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
| 50 |
+
self.ffn_layers.append(
|
| 51 |
+
FFN(
|
| 52 |
+
hidden_channels,
|
| 53 |
+
hidden_channels,
|
| 54 |
+
filter_channels,
|
| 55 |
+
kernel_size,
|
| 56 |
+
p_dropout=p_dropout,
|
| 57 |
+
)
|
| 58 |
+
)
|
| 59 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
| 60 |
+
|
| 61 |
+
def forward(self, x, x_mask):
|
| 62 |
+
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
| 63 |
+
x = x * x_mask
|
| 64 |
+
for i in range(self.n_layers):
|
| 65 |
+
y = self.attn_layers[i](x, x, attn_mask)
|
| 66 |
+
y = self.drop(y)
|
| 67 |
+
x = self.norm_layers_1[i](x + y)
|
| 68 |
+
|
| 69 |
+
y = self.ffn_layers[i](x, x_mask)
|
| 70 |
+
y = self.drop(y)
|
| 71 |
+
x = self.norm_layers_2[i](x + y)
|
| 72 |
+
x = x * x_mask
|
| 73 |
+
return x
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
class Decoder(nn.Module):
|
| 77 |
+
def __init__(
|
| 78 |
+
self,
|
| 79 |
+
hidden_channels,
|
| 80 |
+
filter_channels,
|
| 81 |
+
n_heads,
|
| 82 |
+
n_layers,
|
| 83 |
+
kernel_size=1,
|
| 84 |
+
p_dropout=0.0,
|
| 85 |
+
proximal_bias=False,
|
| 86 |
+
proximal_init=True,
|
| 87 |
+
**kwargs
|
| 88 |
+
):
|
| 89 |
+
super().__init__()
|
| 90 |
+
self.hidden_channels = hidden_channels
|
| 91 |
+
self.filter_channels = filter_channels
|
| 92 |
+
self.n_heads = n_heads
|
| 93 |
+
self.n_layers = n_layers
|
| 94 |
+
self.kernel_size = kernel_size
|
| 95 |
+
self.p_dropout = p_dropout
|
| 96 |
+
self.proximal_bias = proximal_bias
|
| 97 |
+
self.proximal_init = proximal_init
|
| 98 |
+
|
| 99 |
+
self.drop = nn.Dropout(p_dropout)
|
| 100 |
+
self.self_attn_layers = nn.ModuleList()
|
| 101 |
+
self.norm_layers_0 = nn.ModuleList()
|
| 102 |
+
self.encdec_attn_layers = nn.ModuleList()
|
| 103 |
+
self.norm_layers_1 = nn.ModuleList()
|
| 104 |
+
self.ffn_layers = nn.ModuleList()
|
| 105 |
+
self.norm_layers_2 = nn.ModuleList()
|
| 106 |
+
for i in range(self.n_layers):
|
| 107 |
+
self.self_attn_layers.append(
|
| 108 |
+
MultiHeadAttention(
|
| 109 |
+
hidden_channels,
|
| 110 |
+
hidden_channels,
|
| 111 |
+
n_heads,
|
| 112 |
+
p_dropout=p_dropout,
|
| 113 |
+
proximal_bias=proximal_bias,
|
| 114 |
+
proximal_init=proximal_init,
|
| 115 |
+
)
|
| 116 |
+
)
|
| 117 |
+
self.norm_layers_0.append(LayerNorm(hidden_channels))
|
| 118 |
+
self.encdec_attn_layers.append(
|
| 119 |
+
MultiHeadAttention(
|
| 120 |
+
hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout
|
| 121 |
+
)
|
| 122 |
+
)
|
| 123 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
| 124 |
+
self.ffn_layers.append(
|
| 125 |
+
FFN(
|
| 126 |
+
hidden_channels,
|
| 127 |
+
hidden_channels,
|
| 128 |
+
filter_channels,
|
| 129 |
+
kernel_size,
|
| 130 |
+
p_dropout=p_dropout,
|
| 131 |
+
causal=True,
|
| 132 |
+
)
|
| 133 |
+
)
|
| 134 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
| 135 |
+
|
| 136 |
+
def forward(self, x, x_mask, h, h_mask):
|
| 137 |
+
"""
|
| 138 |
+
x: decoder input
|
| 139 |
+
h: encoder output
|
| 140 |
+
"""
|
| 141 |
+
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(
|
| 142 |
+
device=x.device, dtype=x.dtype
|
| 143 |
+
)
|
| 144 |
+
encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
| 145 |
+
x = x * x_mask
|
| 146 |
+
for i in range(self.n_layers):
|
| 147 |
+
y = self.self_attn_layers[i](x, x, self_attn_mask)
|
| 148 |
+
y = self.drop(y)
|
| 149 |
+
x = self.norm_layers_0[i](x + y)
|
| 150 |
+
|
| 151 |
+
y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
|
| 152 |
+
y = self.drop(y)
|
| 153 |
+
x = self.norm_layers_1[i](x + y)
|
| 154 |
+
|
| 155 |
+
y = self.ffn_layers[i](x, x_mask)
|
| 156 |
+
y = self.drop(y)
|
| 157 |
+
x = self.norm_layers_2[i](x + y)
|
| 158 |
+
x = x * x_mask
|
| 159 |
+
return x
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
class MultiHeadAttention(nn.Module):
|
| 163 |
+
def __init__(
|
| 164 |
+
self,
|
| 165 |
+
channels,
|
| 166 |
+
out_channels,
|
| 167 |
+
n_heads,
|
| 168 |
+
p_dropout=0.0,
|
| 169 |
+
window_size=None,
|
| 170 |
+
heads_share=True,
|
| 171 |
+
block_length=None,
|
| 172 |
+
proximal_bias=False,
|
| 173 |
+
proximal_init=False,
|
| 174 |
+
):
|
| 175 |
+
super().__init__()
|
| 176 |
+
assert channels % n_heads == 0
|
| 177 |
+
|
| 178 |
+
self.channels = channels
|
| 179 |
+
self.out_channels = out_channels
|
| 180 |
+
self.n_heads = n_heads
|
| 181 |
+
self.p_dropout = p_dropout
|
| 182 |
+
self.window_size = window_size
|
| 183 |
+
self.heads_share = heads_share
|
| 184 |
+
self.block_length = block_length
|
| 185 |
+
self.proximal_bias = proximal_bias
|
| 186 |
+
self.proximal_init = proximal_init
|
| 187 |
+
self.attn = None
|
| 188 |
+
|
| 189 |
+
self.k_channels = channels // n_heads
|
| 190 |
+
self.conv_q = nn.Conv1d(channels, channels, 1)
|
| 191 |
+
self.conv_k = nn.Conv1d(channels, channels, 1)
|
| 192 |
+
self.conv_v = nn.Conv1d(channels, channels, 1)
|
| 193 |
+
self.conv_o = nn.Conv1d(channels, out_channels, 1)
|
| 194 |
+
self.drop = nn.Dropout(p_dropout)
|
| 195 |
+
|
| 196 |
+
if window_size is not None:
|
| 197 |
+
n_heads_rel = 1 if heads_share else n_heads
|
| 198 |
+
rel_stddev = self.k_channels**-0.5
|
| 199 |
+
self.emb_rel_k = nn.Parameter(
|
| 200 |
+
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
|
| 201 |
+
* rel_stddev
|
| 202 |
+
)
|
| 203 |
+
self.emb_rel_v = nn.Parameter(
|
| 204 |
+
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
|
| 205 |
+
* rel_stddev
|
| 206 |
+
)
|
| 207 |
+
|
| 208 |
+
nn.init.xavier_uniform_(self.conv_q.weight)
|
| 209 |
+
nn.init.xavier_uniform_(self.conv_k.weight)
|
| 210 |
+
nn.init.xavier_uniform_(self.conv_v.weight)
|
| 211 |
+
if proximal_init:
|
| 212 |
+
with torch.no_grad():
|
| 213 |
+
self.conv_k.weight.copy_(self.conv_q.weight)
|
| 214 |
+
self.conv_k.bias.copy_(self.conv_q.bias)
|
| 215 |
+
|
| 216 |
+
def forward(self, x, c, attn_mask=None):
|
| 217 |
+
q = self.conv_q(x)
|
| 218 |
+
k = self.conv_k(c)
|
| 219 |
+
v = self.conv_v(c)
|
| 220 |
+
|
| 221 |
+
x, self.attn = self.attention(q, k, v, mask=attn_mask)
|
| 222 |
+
|
| 223 |
+
x = self.conv_o(x)
|
| 224 |
+
return x
|
| 225 |
+
|
| 226 |
+
def attention(self, query, key, value, mask=None):
|
| 227 |
+
# reshape [b, d, t] -> [b, n_h, t, d_k]
|
| 228 |
+
b, d, t_s, t_t = (*key.size(), query.size(2))
|
| 229 |
+
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
|
| 230 |
+
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
| 231 |
+
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
| 232 |
+
|
| 233 |
+
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
|
| 234 |
+
if self.window_size is not None:
|
| 235 |
+
assert (
|
| 236 |
+
t_s == t_t
|
| 237 |
+
), "Relative attention is only available for self-attention."
|
| 238 |
+
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
|
| 239 |
+
rel_logits = self._matmul_with_relative_keys(
|
| 240 |
+
query / math.sqrt(self.k_channels), key_relative_embeddings
|
| 241 |
+
)
|
| 242 |
+
scores_local = self._relative_position_to_absolute_position(rel_logits)
|
| 243 |
+
scores = scores + scores_local
|
| 244 |
+
if self.proximal_bias:
|
| 245 |
+
assert t_s == t_t, "Proximal bias is only available for self-attention."
|
| 246 |
+
scores = scores + self._attention_bias_proximal(t_s).to(
|
| 247 |
+
device=scores.device, dtype=scores.dtype
|
| 248 |
+
)
|
| 249 |
+
if mask is not None:
|
| 250 |
+
scores = scores.masked_fill(mask == 0, -1e4)
|
| 251 |
+
if self.block_length is not None:
|
| 252 |
+
assert (
|
| 253 |
+
t_s == t_t
|
| 254 |
+
), "Local attention is only available for self-attention."
|
| 255 |
+
block_mask = (
|
| 256 |
+
torch.ones_like(scores)
|
| 257 |
+
.triu(-self.block_length)
|
| 258 |
+
.tril(self.block_length)
|
| 259 |
+
)
|
| 260 |
+
scores = scores.masked_fill(block_mask == 0, -1e4)
|
| 261 |
+
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
|
| 262 |
+
p_attn = self.drop(p_attn)
|
| 263 |
+
output = torch.matmul(p_attn, value)
|
| 264 |
+
if self.window_size is not None:
|
| 265 |
+
relative_weights = self._absolute_position_to_relative_position(p_attn)
|
| 266 |
+
value_relative_embeddings = self._get_relative_embeddings(
|
| 267 |
+
self.emb_rel_v, t_s
|
| 268 |
+
)
|
| 269 |
+
output = output + self._matmul_with_relative_values(
|
| 270 |
+
relative_weights, value_relative_embeddings
|
| 271 |
+
)
|
| 272 |
+
output = (
|
| 273 |
+
output.transpose(2, 3).contiguous().view(b, d, t_t)
|
| 274 |
+
) # [b, n_h, t_t, d_k] -> [b, d, t_t]
|
| 275 |
+
return output, p_attn
|
| 276 |
+
|
| 277 |
+
def _matmul_with_relative_values(self, x, y):
|
| 278 |
+
"""
|
| 279 |
+
x: [b, h, l, m]
|
| 280 |
+
y: [h or 1, m, d]
|
| 281 |
+
ret: [b, h, l, d]
|
| 282 |
+
"""
|
| 283 |
+
ret = torch.matmul(x, y.unsqueeze(0))
|
| 284 |
+
return ret
|
| 285 |
+
|
| 286 |
+
def _matmul_with_relative_keys(self, x, y):
|
| 287 |
+
"""
|
| 288 |
+
x: [b, h, l, d]
|
| 289 |
+
y: [h or 1, m, d]
|
| 290 |
+
ret: [b, h, l, m]
|
| 291 |
+
"""
|
| 292 |
+
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
|
| 293 |
+
return ret
|
| 294 |
+
|
| 295 |
+
def _get_relative_embeddings(self, relative_embeddings, length):
|
| 296 |
+
max_relative_position = 2 * self.window_size + 1
|
| 297 |
+
# Pad first before slice to avoid using cond ops.
|
| 298 |
+
pad_length = max(length - (self.window_size + 1), 0)
|
| 299 |
+
slice_start_position = max((self.window_size + 1) - length, 0)
|
| 300 |
+
slice_end_position = slice_start_position + 2 * length - 1
|
| 301 |
+
if pad_length > 0:
|
| 302 |
+
padded_relative_embeddings = F.pad(
|
| 303 |
+
relative_embeddings,
|
| 304 |
+
commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]),
|
| 305 |
+
)
|
| 306 |
+
else:
|
| 307 |
+
padded_relative_embeddings = relative_embeddings
|
| 308 |
+
used_relative_embeddings = padded_relative_embeddings[
|
| 309 |
+
:, slice_start_position:slice_end_position
|
| 310 |
+
]
|
| 311 |
+
return used_relative_embeddings
|
| 312 |
+
|
| 313 |
+
def _relative_position_to_absolute_position(self, x):
|
| 314 |
+
"""
|
| 315 |
+
x: [b, h, l, 2*l-1]
|
| 316 |
+
ret: [b, h, l, l]
|
| 317 |
+
"""
|
| 318 |
+
batch, heads, length, _ = x.size()
|
| 319 |
+
# Concat columns of pad to shift from relative to absolute indexing.
|
| 320 |
+
x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]]))
|
| 321 |
+
|
| 322 |
+
# Concat extra elements so to add up to shape (len+1, 2*len-1).
|
| 323 |
+
x_flat = x.view([batch, heads, length * 2 * length])
|
| 324 |
+
x_flat = F.pad(
|
| 325 |
+
x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [0, length - 1]])
|
| 326 |
+
)
|
| 327 |
+
|
| 328 |
+
# Reshape and slice out the padded elements.
|
| 329 |
+
x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[
|
| 330 |
+
:, :, :length, length - 1 :
|
| 331 |
+
]
|
| 332 |
+
return x_final
|
| 333 |
+
|
| 334 |
+
def _absolute_position_to_relative_position(self, x):
|
| 335 |
+
"""
|
| 336 |
+
x: [b, h, l, l]
|
| 337 |
+
ret: [b, h, l, 2*l-1]
|
| 338 |
+
"""
|
| 339 |
+
batch, heads, length, _ = x.size()
|
| 340 |
+
# padd along column
|
| 341 |
+
x = F.pad(
|
| 342 |
+
x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]])
|
| 343 |
+
)
|
| 344 |
+
x_flat = x.view([batch, heads, length**2 + length * (length - 1)])
|
| 345 |
+
# add 0's in the beginning that will skew the elements after reshape
|
| 346 |
+
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
|
| 347 |
+
x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
|
| 348 |
+
return x_final
|
| 349 |
+
|
| 350 |
+
def _attention_bias_proximal(self, length):
|
| 351 |
+
"""Bias for self-attention to encourage attention to close positions.
|
| 352 |
+
Args:
|
| 353 |
+
length: an integer scalar.
|
| 354 |
+
Returns:
|
| 355 |
+
a Tensor with shape [1, 1, length, length]
|
| 356 |
+
"""
|
| 357 |
+
r = torch.arange(length, dtype=torch.float32)
|
| 358 |
+
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
|
| 359 |
+
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
|
| 360 |
+
|
| 361 |
+
|
| 362 |
+
class FFN(nn.Module):
|
| 363 |
+
def __init__(
|
| 364 |
+
self,
|
| 365 |
+
in_channels,
|
| 366 |
+
out_channels,
|
| 367 |
+
filter_channels,
|
| 368 |
+
kernel_size,
|
| 369 |
+
p_dropout=0.0,
|
| 370 |
+
activation=None,
|
| 371 |
+
causal=False,
|
| 372 |
+
):
|
| 373 |
+
super().__init__()
|
| 374 |
+
self.in_channels = in_channels
|
| 375 |
+
self.out_channels = out_channels
|
| 376 |
+
self.filter_channels = filter_channels
|
| 377 |
+
self.kernel_size = kernel_size
|
| 378 |
+
self.p_dropout = p_dropout
|
| 379 |
+
self.activation = activation
|
| 380 |
+
self.causal = causal
|
| 381 |
+
|
| 382 |
+
if causal:
|
| 383 |
+
self.padding = self._causal_padding
|
| 384 |
+
else:
|
| 385 |
+
self.padding = self._same_padding
|
| 386 |
+
|
| 387 |
+
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
|
| 388 |
+
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
|
| 389 |
+
self.drop = nn.Dropout(p_dropout)
|
| 390 |
+
|
| 391 |
+
def forward(self, x, x_mask):
|
| 392 |
+
x = self.conv_1(self.padding(x * x_mask))
|
| 393 |
+
if self.activation == "gelu":
|
| 394 |
+
x = x * torch.sigmoid(1.702 * x)
|
| 395 |
+
else:
|
| 396 |
+
x = torch.relu(x)
|
| 397 |
+
x = self.drop(x)
|
| 398 |
+
x = self.conv_2(self.padding(x * x_mask))
|
| 399 |
+
return x * x_mask
|
| 400 |
+
|
| 401 |
+
def _causal_padding(self, x):
|
| 402 |
+
if self.kernel_size == 1:
|
| 403 |
+
return x
|
| 404 |
+
pad_l = self.kernel_size - 1
|
| 405 |
+
pad_r = 0
|
| 406 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
| 407 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
| 408 |
+
return x
|
| 409 |
+
|
| 410 |
+
def _same_padding(self, x):
|
| 411 |
+
if self.kernel_size == 1:
|
| 412 |
+
return x
|
| 413 |
+
pad_l = (self.kernel_size - 1) // 2
|
| 414 |
+
pad_r = self.kernel_size // 2
|
| 415 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
| 416 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
| 417 |
+
return x
|
infer_pack/commons.py
ADDED
|
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torch
|
| 4 |
+
from torch import nn
|
| 5 |
+
from torch.nn import functional as F
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def init_weights(m, mean=0.0, std=0.01):
|
| 9 |
+
classname = m.__class__.__name__
|
| 10 |
+
if classname.find("Conv") != -1:
|
| 11 |
+
m.weight.data.normal_(mean, std)
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def get_padding(kernel_size, dilation=1):
|
| 15 |
+
return int((kernel_size * dilation - dilation) / 2)
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def convert_pad_shape(pad_shape):
|
| 19 |
+
l = pad_shape[::-1]
|
| 20 |
+
pad_shape = [item for sublist in l for item in sublist]
|
| 21 |
+
return pad_shape
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def kl_divergence(m_p, logs_p, m_q, logs_q):
|
| 25 |
+
"""KL(P||Q)"""
|
| 26 |
+
kl = (logs_q - logs_p) - 0.5
|
| 27 |
+
kl += (
|
| 28 |
+
0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q)
|
| 29 |
+
)
|
| 30 |
+
return kl
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def rand_gumbel(shape):
|
| 34 |
+
"""Sample from the Gumbel distribution, protect from overflows."""
|
| 35 |
+
uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
|
| 36 |
+
return -torch.log(-torch.log(uniform_samples))
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def rand_gumbel_like(x):
|
| 40 |
+
g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
|
| 41 |
+
return g
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def slice_segments(x, ids_str, segment_size=4):
|
| 45 |
+
ret = torch.zeros_like(x[:, :, :segment_size])
|
| 46 |
+
for i in range(x.size(0)):
|
| 47 |
+
idx_str = ids_str[i]
|
| 48 |
+
idx_end = idx_str + segment_size
|
| 49 |
+
ret[i] = x[i, :, idx_str:idx_end]
|
| 50 |
+
return ret
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def slice_segments2(x, ids_str, segment_size=4):
|
| 54 |
+
ret = torch.zeros_like(x[:, :segment_size])
|
| 55 |
+
for i in range(x.size(0)):
|
| 56 |
+
idx_str = ids_str[i]
|
| 57 |
+
idx_end = idx_str + segment_size
|
| 58 |
+
ret[i] = x[i, idx_str:idx_end]
|
| 59 |
+
return ret
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def rand_slice_segments(x, x_lengths=None, segment_size=4):
|
| 63 |
+
b, d, t = x.size()
|
| 64 |
+
if x_lengths is None:
|
| 65 |
+
x_lengths = t
|
| 66 |
+
ids_str_max = x_lengths - segment_size + 1
|
| 67 |
+
ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
|
| 68 |
+
ret = slice_segments(x, ids_str, segment_size)
|
| 69 |
+
return ret, ids_str
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4):
|
| 73 |
+
position = torch.arange(length, dtype=torch.float)
|
| 74 |
+
num_timescales = channels // 2
|
| 75 |
+
log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / (
|
| 76 |
+
num_timescales - 1
|
| 77 |
+
)
|
| 78 |
+
inv_timescales = min_timescale * torch.exp(
|
| 79 |
+
torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment
|
| 80 |
+
)
|
| 81 |
+
scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
|
| 82 |
+
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
|
| 83 |
+
signal = F.pad(signal, [0, 0, 0, channels % 2])
|
| 84 |
+
signal = signal.view(1, channels, length)
|
| 85 |
+
return signal
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
|
| 89 |
+
b, channels, length = x.size()
|
| 90 |
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
| 91 |
+
return x + signal.to(dtype=x.dtype, device=x.device)
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
|
| 95 |
+
b, channels, length = x.size()
|
| 96 |
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
| 97 |
+
return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
def subsequent_mask(length):
|
| 101 |
+
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
|
| 102 |
+
return mask
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
@torch.jit.script
|
| 106 |
+
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
| 107 |
+
n_channels_int = n_channels[0]
|
| 108 |
+
in_act = input_a + input_b
|
| 109 |
+
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
| 110 |
+
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
| 111 |
+
acts = t_act * s_act
|
| 112 |
+
return acts
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
def convert_pad_shape(pad_shape):
|
| 116 |
+
l = pad_shape[::-1]
|
| 117 |
+
pad_shape = [item for sublist in l for item in sublist]
|
| 118 |
+
return pad_shape
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
def shift_1d(x):
|
| 122 |
+
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
|
| 123 |
+
return x
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
def sequence_mask(length, max_length=None):
|
| 127 |
+
if max_length is None:
|
| 128 |
+
max_length = length.max()
|
| 129 |
+
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
| 130 |
+
return x.unsqueeze(0) < length.unsqueeze(1)
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
def generate_path(duration, mask):
|
| 134 |
+
"""
|
| 135 |
+
duration: [b, 1, t_x]
|
| 136 |
+
mask: [b, 1, t_y, t_x]
|
| 137 |
+
"""
|
| 138 |
+
device = duration.device
|
| 139 |
+
|
| 140 |
+
b, _, t_y, t_x = mask.shape
|
| 141 |
+
cum_duration = torch.cumsum(duration, -1)
|
| 142 |
+
|
| 143 |
+
cum_duration_flat = cum_duration.view(b * t_x)
|
| 144 |
+
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
|
| 145 |
+
path = path.view(b, t_x, t_y)
|
| 146 |
+
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
|
| 147 |
+
path = path.unsqueeze(1).transpose(2, 3) * mask
|
| 148 |
+
return path
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
def clip_grad_value_(parameters, clip_value, norm_type=2):
|
| 152 |
+
if isinstance(parameters, torch.Tensor):
|
| 153 |
+
parameters = [parameters]
|
| 154 |
+
parameters = list(filter(lambda p: p.grad is not None, parameters))
|
| 155 |
+
norm_type = float(norm_type)
|
| 156 |
+
if clip_value is not None:
|
| 157 |
+
clip_value = float(clip_value)
|
| 158 |
+
|
| 159 |
+
total_norm = 0
|
| 160 |
+
for p in parameters:
|
| 161 |
+
param_norm = p.grad.data.norm(norm_type)
|
| 162 |
+
total_norm += param_norm.item() ** norm_type
|
| 163 |
+
if clip_value is not None:
|
| 164 |
+
p.grad.data.clamp_(min=-clip_value, max=clip_value)
|
| 165 |
+
total_norm = total_norm ** (1.0 / norm_type)
|
| 166 |
+
return total_norm
|
infer_pack/models.py
ADDED
|
@@ -0,0 +1,1124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math, pdb, os
|
| 2 |
+
from time import time as ttime
|
| 3 |
+
import torch
|
| 4 |
+
from torch import nn
|
| 5 |
+
from torch.nn import functional as F
|
| 6 |
+
from infer_pack import modules
|
| 7 |
+
from infer_pack import attentions
|
| 8 |
+
from infer_pack import commons
|
| 9 |
+
from infer_pack.commons import init_weights, get_padding
|
| 10 |
+
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
| 11 |
+
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
| 12 |
+
from infer_pack.commons import init_weights
|
| 13 |
+
import numpy as np
|
| 14 |
+
from infer_pack import commons
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class TextEncoder256(nn.Module):
|
| 18 |
+
def __init__(
|
| 19 |
+
self,
|
| 20 |
+
out_channels,
|
| 21 |
+
hidden_channels,
|
| 22 |
+
filter_channels,
|
| 23 |
+
n_heads,
|
| 24 |
+
n_layers,
|
| 25 |
+
kernel_size,
|
| 26 |
+
p_dropout,
|
| 27 |
+
f0=True,
|
| 28 |
+
):
|
| 29 |
+
super().__init__()
|
| 30 |
+
self.out_channels = out_channels
|
| 31 |
+
self.hidden_channels = hidden_channels
|
| 32 |
+
self.filter_channels = filter_channels
|
| 33 |
+
self.n_heads = n_heads
|
| 34 |
+
self.n_layers = n_layers
|
| 35 |
+
self.kernel_size = kernel_size
|
| 36 |
+
self.p_dropout = p_dropout
|
| 37 |
+
self.emb_phone = nn.Linear(256, hidden_channels)
|
| 38 |
+
self.lrelu = nn.LeakyReLU(0.1, inplace=True)
|
| 39 |
+
if f0 == True:
|
| 40 |
+
self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
|
| 41 |
+
self.encoder = attentions.Encoder(
|
| 42 |
+
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
|
| 43 |
+
)
|
| 44 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
| 45 |
+
|
| 46 |
+
def forward(self, phone, pitch, lengths):
|
| 47 |
+
if pitch == None:
|
| 48 |
+
x = self.emb_phone(phone)
|
| 49 |
+
else:
|
| 50 |
+
x = self.emb_phone(phone) + self.emb_pitch(pitch)
|
| 51 |
+
x = x * math.sqrt(self.hidden_channels) # [b, t, h]
|
| 52 |
+
x = self.lrelu(x)
|
| 53 |
+
x = torch.transpose(x, 1, -1) # [b, h, t]
|
| 54 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
|
| 55 |
+
x.dtype
|
| 56 |
+
)
|
| 57 |
+
x = self.encoder(x * x_mask, x_mask)
|
| 58 |
+
stats = self.proj(x) * x_mask
|
| 59 |
+
|
| 60 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
| 61 |
+
return m, logs, x_mask
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
class TextEncoder768(nn.Module):
|
| 65 |
+
def __init__(
|
| 66 |
+
self,
|
| 67 |
+
out_channels,
|
| 68 |
+
hidden_channels,
|
| 69 |
+
filter_channels,
|
| 70 |
+
n_heads,
|
| 71 |
+
n_layers,
|
| 72 |
+
kernel_size,
|
| 73 |
+
p_dropout,
|
| 74 |
+
f0=True,
|
| 75 |
+
):
|
| 76 |
+
super().__init__()
|
| 77 |
+
self.out_channels = out_channels
|
| 78 |
+
self.hidden_channels = hidden_channels
|
| 79 |
+
self.filter_channels = filter_channels
|
| 80 |
+
self.n_heads = n_heads
|
| 81 |
+
self.n_layers = n_layers
|
| 82 |
+
self.kernel_size = kernel_size
|
| 83 |
+
self.p_dropout = p_dropout
|
| 84 |
+
self.emb_phone = nn.Linear(768, hidden_channels)
|
| 85 |
+
self.lrelu = nn.LeakyReLU(0.1, inplace=True)
|
| 86 |
+
if f0 == True:
|
| 87 |
+
self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
|
| 88 |
+
self.encoder = attentions.Encoder(
|
| 89 |
+
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
|
| 90 |
+
)
|
| 91 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
| 92 |
+
|
| 93 |
+
def forward(self, phone, pitch, lengths):
|
| 94 |
+
if pitch == None:
|
| 95 |
+
x = self.emb_phone(phone)
|
| 96 |
+
else:
|
| 97 |
+
x = self.emb_phone(phone) + self.emb_pitch(pitch)
|
| 98 |
+
x = x * math.sqrt(self.hidden_channels) # [b, t, h]
|
| 99 |
+
x = self.lrelu(x)
|
| 100 |
+
x = torch.transpose(x, 1, -1) # [b, h, t]
|
| 101 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
|
| 102 |
+
x.dtype
|
| 103 |
+
)
|
| 104 |
+
x = self.encoder(x * x_mask, x_mask)
|
| 105 |
+
stats = self.proj(x) * x_mask
|
| 106 |
+
|
| 107 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
| 108 |
+
return m, logs, x_mask
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
class ResidualCouplingBlock(nn.Module):
|
| 112 |
+
def __init__(
|
| 113 |
+
self,
|
| 114 |
+
channels,
|
| 115 |
+
hidden_channels,
|
| 116 |
+
kernel_size,
|
| 117 |
+
dilation_rate,
|
| 118 |
+
n_layers,
|
| 119 |
+
n_flows=4,
|
| 120 |
+
gin_channels=0,
|
| 121 |
+
):
|
| 122 |
+
super().__init__()
|
| 123 |
+
self.channels = channels
|
| 124 |
+
self.hidden_channels = hidden_channels
|
| 125 |
+
self.kernel_size = kernel_size
|
| 126 |
+
self.dilation_rate = dilation_rate
|
| 127 |
+
self.n_layers = n_layers
|
| 128 |
+
self.n_flows = n_flows
|
| 129 |
+
self.gin_channels = gin_channels
|
| 130 |
+
|
| 131 |
+
self.flows = nn.ModuleList()
|
| 132 |
+
for i in range(n_flows):
|
| 133 |
+
self.flows.append(
|
| 134 |
+
modules.ResidualCouplingLayer(
|
| 135 |
+
channels,
|
| 136 |
+
hidden_channels,
|
| 137 |
+
kernel_size,
|
| 138 |
+
dilation_rate,
|
| 139 |
+
n_layers,
|
| 140 |
+
gin_channels=gin_channels,
|
| 141 |
+
mean_only=True,
|
| 142 |
+
)
|
| 143 |
+
)
|
| 144 |
+
self.flows.append(modules.Flip())
|
| 145 |
+
|
| 146 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
| 147 |
+
if not reverse:
|
| 148 |
+
for flow in self.flows:
|
| 149 |
+
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
| 150 |
+
else:
|
| 151 |
+
for flow in reversed(self.flows):
|
| 152 |
+
x = flow(x, x_mask, g=g, reverse=reverse)
|
| 153 |
+
return x
|
| 154 |
+
|
| 155 |
+
def remove_weight_norm(self):
|
| 156 |
+
for i in range(self.n_flows):
|
| 157 |
+
self.flows[i * 2].remove_weight_norm()
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
class PosteriorEncoder(nn.Module):
|
| 161 |
+
def __init__(
|
| 162 |
+
self,
|
| 163 |
+
in_channels,
|
| 164 |
+
out_channels,
|
| 165 |
+
hidden_channels,
|
| 166 |
+
kernel_size,
|
| 167 |
+
dilation_rate,
|
| 168 |
+
n_layers,
|
| 169 |
+
gin_channels=0,
|
| 170 |
+
):
|
| 171 |
+
super().__init__()
|
| 172 |
+
self.in_channels = in_channels
|
| 173 |
+
self.out_channels = out_channels
|
| 174 |
+
self.hidden_channels = hidden_channels
|
| 175 |
+
self.kernel_size = kernel_size
|
| 176 |
+
self.dilation_rate = dilation_rate
|
| 177 |
+
self.n_layers = n_layers
|
| 178 |
+
self.gin_channels = gin_channels
|
| 179 |
+
|
| 180 |
+
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
| 181 |
+
self.enc = modules.WN(
|
| 182 |
+
hidden_channels,
|
| 183 |
+
kernel_size,
|
| 184 |
+
dilation_rate,
|
| 185 |
+
n_layers,
|
| 186 |
+
gin_channels=gin_channels,
|
| 187 |
+
)
|
| 188 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
| 189 |
+
|
| 190 |
+
def forward(self, x, x_lengths, g=None):
|
| 191 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
|
| 192 |
+
x.dtype
|
| 193 |
+
)
|
| 194 |
+
x = self.pre(x) * x_mask
|
| 195 |
+
x = self.enc(x, x_mask, g=g)
|
| 196 |
+
stats = self.proj(x) * x_mask
|
| 197 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
| 198 |
+
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
| 199 |
+
return z, m, logs, x_mask
|
| 200 |
+
|
| 201 |
+
def remove_weight_norm(self):
|
| 202 |
+
self.enc.remove_weight_norm()
|
| 203 |
+
|
| 204 |
+
|
| 205 |
+
class Generator(torch.nn.Module):
|
| 206 |
+
def __init__(
|
| 207 |
+
self,
|
| 208 |
+
initial_channel,
|
| 209 |
+
resblock,
|
| 210 |
+
resblock_kernel_sizes,
|
| 211 |
+
resblock_dilation_sizes,
|
| 212 |
+
upsample_rates,
|
| 213 |
+
upsample_initial_channel,
|
| 214 |
+
upsample_kernel_sizes,
|
| 215 |
+
gin_channels=0,
|
| 216 |
+
):
|
| 217 |
+
super(Generator, self).__init__()
|
| 218 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
| 219 |
+
self.num_upsamples = len(upsample_rates)
|
| 220 |
+
self.conv_pre = Conv1d(
|
| 221 |
+
initial_channel, upsample_initial_channel, 7, 1, padding=3
|
| 222 |
+
)
|
| 223 |
+
resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
|
| 224 |
+
|
| 225 |
+
self.ups = nn.ModuleList()
|
| 226 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
| 227 |
+
self.ups.append(
|
| 228 |
+
weight_norm(
|
| 229 |
+
ConvTranspose1d(
|
| 230 |
+
upsample_initial_channel // (2**i),
|
| 231 |
+
upsample_initial_channel // (2 ** (i + 1)),
|
| 232 |
+
k,
|
| 233 |
+
u,
|
| 234 |
+
padding=(k - u) // 2,
|
| 235 |
+
)
|
| 236 |
+
)
|
| 237 |
+
)
|
| 238 |
+
|
| 239 |
+
self.resblocks = nn.ModuleList()
|
| 240 |
+
for i in range(len(self.ups)):
|
| 241 |
+
ch = upsample_initial_channel // (2 ** (i + 1))
|
| 242 |
+
for j, (k, d) in enumerate(
|
| 243 |
+
zip(resblock_kernel_sizes, resblock_dilation_sizes)
|
| 244 |
+
):
|
| 245 |
+
self.resblocks.append(resblock(ch, k, d))
|
| 246 |
+
|
| 247 |
+
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
| 248 |
+
self.ups.apply(init_weights)
|
| 249 |
+
|
| 250 |
+
if gin_channels != 0:
|
| 251 |
+
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
| 252 |
+
|
| 253 |
+
def forward(self, x, g=None):
|
| 254 |
+
x = self.conv_pre(x)
|
| 255 |
+
if g is not None:
|
| 256 |
+
x = x + self.cond(g)
|
| 257 |
+
|
| 258 |
+
for i in range(self.num_upsamples):
|
| 259 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
| 260 |
+
x = self.ups[i](x)
|
| 261 |
+
xs = None
|
| 262 |
+
for j in range(self.num_kernels):
|
| 263 |
+
if xs is None:
|
| 264 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
| 265 |
+
else:
|
| 266 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
| 267 |
+
x = xs / self.num_kernels
|
| 268 |
+
x = F.leaky_relu(x)
|
| 269 |
+
x = self.conv_post(x)
|
| 270 |
+
x = torch.tanh(x)
|
| 271 |
+
|
| 272 |
+
return x
|
| 273 |
+
|
| 274 |
+
def remove_weight_norm(self):
|
| 275 |
+
for l in self.ups:
|
| 276 |
+
remove_weight_norm(l)
|
| 277 |
+
for l in self.resblocks:
|
| 278 |
+
l.remove_weight_norm()
|
| 279 |
+
|
| 280 |
+
|
| 281 |
+
class SineGen(torch.nn.Module):
|
| 282 |
+
"""Definition of sine generator
|
| 283 |
+
SineGen(samp_rate, harmonic_num = 0,
|
| 284 |
+
sine_amp = 0.1, noise_std = 0.003,
|
| 285 |
+
voiced_threshold = 0,
|
| 286 |
+
flag_for_pulse=False)
|
| 287 |
+
samp_rate: sampling rate in Hz
|
| 288 |
+
harmonic_num: number of harmonic overtones (default 0)
|
| 289 |
+
sine_amp: amplitude of sine-wavefrom (default 0.1)
|
| 290 |
+
noise_std: std of Gaussian noise (default 0.003)
|
| 291 |
+
voiced_thoreshold: F0 threshold for U/V classification (default 0)
|
| 292 |
+
flag_for_pulse: this SinGen is used inside PulseGen (default False)
|
| 293 |
+
Note: when flag_for_pulse is True, the first time step of a voiced
|
| 294 |
+
segment is always sin(np.pi) or cos(0)
|
| 295 |
+
"""
|
| 296 |
+
|
| 297 |
+
def __init__(
|
| 298 |
+
self,
|
| 299 |
+
samp_rate,
|
| 300 |
+
harmonic_num=0,
|
| 301 |
+
sine_amp=0.1,
|
| 302 |
+
noise_std=0.003,
|
| 303 |
+
voiced_threshold=0,
|
| 304 |
+
flag_for_pulse=False,
|
| 305 |
+
):
|
| 306 |
+
super(SineGen, self).__init__()
|
| 307 |
+
self.sine_amp = sine_amp
|
| 308 |
+
self.noise_std = noise_std
|
| 309 |
+
self.harmonic_num = harmonic_num
|
| 310 |
+
self.dim = self.harmonic_num + 1
|
| 311 |
+
self.sampling_rate = samp_rate
|
| 312 |
+
self.voiced_threshold = voiced_threshold
|
| 313 |
+
|
| 314 |
+
def _f02uv(self, f0):
|
| 315 |
+
# generate uv signal
|
| 316 |
+
uv = torch.ones_like(f0)
|
| 317 |
+
uv = uv * (f0 > self.voiced_threshold)
|
| 318 |
+
return uv
|
| 319 |
+
|
| 320 |
+
def forward(self, f0, upp):
|
| 321 |
+
"""sine_tensor, uv = forward(f0)
|
| 322 |
+
input F0: tensor(batchsize=1, length, dim=1)
|
| 323 |
+
f0 for unvoiced steps should be 0
|
| 324 |
+
output sine_tensor: tensor(batchsize=1, length, dim)
|
| 325 |
+
output uv: tensor(batchsize=1, length, 1)
|
| 326 |
+
"""
|
| 327 |
+
with torch.no_grad():
|
| 328 |
+
f0 = f0[:, None].transpose(1, 2)
|
| 329 |
+
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
|
| 330 |
+
# fundamental component
|
| 331 |
+
f0_buf[:, :, 0] = f0[:, :, 0]
|
| 332 |
+
for idx in np.arange(self.harmonic_num):
|
| 333 |
+
f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (
|
| 334 |
+
idx + 2
|
| 335 |
+
) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
|
| 336 |
+
rad_values = (f0_buf / self.sampling_rate) % 1 ###%1意味着n_har的乘积无法后处理优化
|
| 337 |
+
rand_ini = torch.rand(
|
| 338 |
+
f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device
|
| 339 |
+
)
|
| 340 |
+
rand_ini[:, 0] = 0
|
| 341 |
+
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
|
| 342 |
+
tmp_over_one = torch.cumsum(rad_values, 1) # % 1 #####%1意味着后面的cumsum无法再优化
|
| 343 |
+
tmp_over_one *= upp
|
| 344 |
+
tmp_over_one = F.interpolate(
|
| 345 |
+
tmp_over_one.transpose(2, 1),
|
| 346 |
+
scale_factor=upp,
|
| 347 |
+
mode="linear",
|
| 348 |
+
align_corners=True,
|
| 349 |
+
).transpose(2, 1)
|
| 350 |
+
rad_values = F.interpolate(
|
| 351 |
+
rad_values.transpose(2, 1), scale_factor=upp, mode="nearest"
|
| 352 |
+
).transpose(
|
| 353 |
+
2, 1
|
| 354 |
+
) #######
|
| 355 |
+
tmp_over_one %= 1
|
| 356 |
+
tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
|
| 357 |
+
cumsum_shift = torch.zeros_like(rad_values)
|
| 358 |
+
cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
|
| 359 |
+
sine_waves = torch.sin(
|
| 360 |
+
torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi
|
| 361 |
+
)
|
| 362 |
+
sine_waves = sine_waves * self.sine_amp
|
| 363 |
+
uv = self._f02uv(f0)
|
| 364 |
+
uv = F.interpolate(
|
| 365 |
+
uv.transpose(2, 1), scale_factor=upp, mode="nearest"
|
| 366 |
+
).transpose(2, 1)
|
| 367 |
+
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
|
| 368 |
+
noise = noise_amp * torch.randn_like(sine_waves)
|
| 369 |
+
sine_waves = sine_waves * uv + noise
|
| 370 |
+
return sine_waves, uv, noise
|
| 371 |
+
|
| 372 |
+
|
| 373 |
+
class SourceModuleHnNSF(torch.nn.Module):
|
| 374 |
+
"""SourceModule for hn-nsf
|
| 375 |
+
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
|
| 376 |
+
add_noise_std=0.003, voiced_threshod=0)
|
| 377 |
+
sampling_rate: sampling_rate in Hz
|
| 378 |
+
harmonic_num: number of harmonic above F0 (default: 0)
|
| 379 |
+
sine_amp: amplitude of sine source signal (default: 0.1)
|
| 380 |
+
add_noise_std: std of additive Gaussian noise (default: 0.003)
|
| 381 |
+
note that amplitude of noise in unvoiced is decided
|
| 382 |
+
by sine_amp
|
| 383 |
+
voiced_threshold: threhold to set U/V given F0 (default: 0)
|
| 384 |
+
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
| 385 |
+
F0_sampled (batchsize, length, 1)
|
| 386 |
+
Sine_source (batchsize, length, 1)
|
| 387 |
+
noise_source (batchsize, length 1)
|
| 388 |
+
uv (batchsize, length, 1)
|
| 389 |
+
"""
|
| 390 |
+
|
| 391 |
+
def __init__(
|
| 392 |
+
self,
|
| 393 |
+
sampling_rate,
|
| 394 |
+
harmonic_num=0,
|
| 395 |
+
sine_amp=0.1,
|
| 396 |
+
add_noise_std=0.003,
|
| 397 |
+
voiced_threshod=0,
|
| 398 |
+
is_half=True,
|
| 399 |
+
):
|
| 400 |
+
super(SourceModuleHnNSF, self).__init__()
|
| 401 |
+
|
| 402 |
+
self.sine_amp = sine_amp
|
| 403 |
+
self.noise_std = add_noise_std
|
| 404 |
+
self.is_half = is_half
|
| 405 |
+
# to produce sine waveforms
|
| 406 |
+
self.l_sin_gen = SineGen(
|
| 407 |
+
sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod
|
| 408 |
+
)
|
| 409 |
+
|
| 410 |
+
# to merge source harmonics into a single excitation
|
| 411 |
+
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
|
| 412 |
+
self.l_tanh = torch.nn.Tanh()
|
| 413 |
+
|
| 414 |
+
def forward(self, x, upp=None):
|
| 415 |
+
sine_wavs, uv, _ = self.l_sin_gen(x, upp)
|
| 416 |
+
if self.is_half:
|
| 417 |
+
sine_wavs = sine_wavs.half()
|
| 418 |
+
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
|
| 419 |
+
return sine_merge, None, None # noise, uv
|
| 420 |
+
|
| 421 |
+
|
| 422 |
+
class GeneratorNSF(torch.nn.Module):
|
| 423 |
+
def __init__(
|
| 424 |
+
self,
|
| 425 |
+
initial_channel,
|
| 426 |
+
resblock,
|
| 427 |
+
resblock_kernel_sizes,
|
| 428 |
+
resblock_dilation_sizes,
|
| 429 |
+
upsample_rates,
|
| 430 |
+
upsample_initial_channel,
|
| 431 |
+
upsample_kernel_sizes,
|
| 432 |
+
gin_channels,
|
| 433 |
+
sr,
|
| 434 |
+
is_half=False,
|
| 435 |
+
):
|
| 436 |
+
super(GeneratorNSF, self).__init__()
|
| 437 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
| 438 |
+
self.num_upsamples = len(upsample_rates)
|
| 439 |
+
|
| 440 |
+
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
|
| 441 |
+
self.m_source = SourceModuleHnNSF(
|
| 442 |
+
sampling_rate=sr, harmonic_num=0, is_half=is_half
|
| 443 |
+
)
|
| 444 |
+
self.noise_convs = nn.ModuleList()
|
| 445 |
+
self.conv_pre = Conv1d(
|
| 446 |
+
initial_channel, upsample_initial_channel, 7, 1, padding=3
|
| 447 |
+
)
|
| 448 |
+
resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
|
| 449 |
+
|
| 450 |
+
self.ups = nn.ModuleList()
|
| 451 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
| 452 |
+
c_cur = upsample_initial_channel // (2 ** (i + 1))
|
| 453 |
+
self.ups.append(
|
| 454 |
+
weight_norm(
|
| 455 |
+
ConvTranspose1d(
|
| 456 |
+
upsample_initial_channel // (2**i),
|
| 457 |
+
upsample_initial_channel // (2 ** (i + 1)),
|
| 458 |
+
k,
|
| 459 |
+
u,
|
| 460 |
+
padding=(k - u) // 2,
|
| 461 |
+
)
|
| 462 |
+
)
|
| 463 |
+
)
|
| 464 |
+
if i + 1 < len(upsample_rates):
|
| 465 |
+
stride_f0 = np.prod(upsample_rates[i + 1 :])
|
| 466 |
+
self.noise_convs.append(
|
| 467 |
+
Conv1d(
|
| 468 |
+
1,
|
| 469 |
+
c_cur,
|
| 470 |
+
kernel_size=stride_f0 * 2,
|
| 471 |
+
stride=stride_f0,
|
| 472 |
+
padding=stride_f0 // 2,
|
| 473 |
+
)
|
| 474 |
+
)
|
| 475 |
+
else:
|
| 476 |
+
self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
|
| 477 |
+
|
| 478 |
+
self.resblocks = nn.ModuleList()
|
| 479 |
+
for i in range(len(self.ups)):
|
| 480 |
+
ch = upsample_initial_channel // (2 ** (i + 1))
|
| 481 |
+
for j, (k, d) in enumerate(
|
| 482 |
+
zip(resblock_kernel_sizes, resblock_dilation_sizes)
|
| 483 |
+
):
|
| 484 |
+
self.resblocks.append(resblock(ch, k, d))
|
| 485 |
+
|
| 486 |
+
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
| 487 |
+
self.ups.apply(init_weights)
|
| 488 |
+
|
| 489 |
+
if gin_channels != 0:
|
| 490 |
+
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
| 491 |
+
|
| 492 |
+
self.upp = np.prod(upsample_rates)
|
| 493 |
+
|
| 494 |
+
def forward(self, x, f0, g=None):
|
| 495 |
+
har_source, noi_source, uv = self.m_source(f0, self.upp)
|
| 496 |
+
har_source = har_source.transpose(1, 2)
|
| 497 |
+
x = self.conv_pre(x)
|
| 498 |
+
if g is not None:
|
| 499 |
+
x = x + self.cond(g)
|
| 500 |
+
|
| 501 |
+
for i in range(self.num_upsamples):
|
| 502 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
| 503 |
+
x = self.ups[i](x)
|
| 504 |
+
x_source = self.noise_convs[i](har_source)
|
| 505 |
+
x = x + x_source
|
| 506 |
+
xs = None
|
| 507 |
+
for j in range(self.num_kernels):
|
| 508 |
+
if xs is None:
|
| 509 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
| 510 |
+
else:
|
| 511 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
| 512 |
+
x = xs / self.num_kernels
|
| 513 |
+
x = F.leaky_relu(x)
|
| 514 |
+
x = self.conv_post(x)
|
| 515 |
+
x = torch.tanh(x)
|
| 516 |
+
return x
|
| 517 |
+
|
| 518 |
+
def remove_weight_norm(self):
|
| 519 |
+
for l in self.ups:
|
| 520 |
+
remove_weight_norm(l)
|
| 521 |
+
for l in self.resblocks:
|
| 522 |
+
l.remove_weight_norm()
|
| 523 |
+
|
| 524 |
+
|
| 525 |
+
sr2sr = {
|
| 526 |
+
"32k": 32000,
|
| 527 |
+
"40k": 40000,
|
| 528 |
+
"48k": 48000,
|
| 529 |
+
}
|
| 530 |
+
|
| 531 |
+
|
| 532 |
+
class SynthesizerTrnMs256NSFsid(nn.Module):
|
| 533 |
+
def __init__(
|
| 534 |
+
self,
|
| 535 |
+
spec_channels,
|
| 536 |
+
segment_size,
|
| 537 |
+
inter_channels,
|
| 538 |
+
hidden_channels,
|
| 539 |
+
filter_channels,
|
| 540 |
+
n_heads,
|
| 541 |
+
n_layers,
|
| 542 |
+
kernel_size,
|
| 543 |
+
p_dropout,
|
| 544 |
+
resblock,
|
| 545 |
+
resblock_kernel_sizes,
|
| 546 |
+
resblock_dilation_sizes,
|
| 547 |
+
upsample_rates,
|
| 548 |
+
upsample_initial_channel,
|
| 549 |
+
upsample_kernel_sizes,
|
| 550 |
+
spk_embed_dim,
|
| 551 |
+
gin_channels,
|
| 552 |
+
sr,
|
| 553 |
+
**kwargs
|
| 554 |
+
):
|
| 555 |
+
super().__init__()
|
| 556 |
+
if type(sr) == type("strr"):
|
| 557 |
+
sr = sr2sr[sr]
|
| 558 |
+
self.spec_channels = spec_channels
|
| 559 |
+
self.inter_channels = inter_channels
|
| 560 |
+
self.hidden_channels = hidden_channels
|
| 561 |
+
self.filter_channels = filter_channels
|
| 562 |
+
self.n_heads = n_heads
|
| 563 |
+
self.n_layers = n_layers
|
| 564 |
+
self.kernel_size = kernel_size
|
| 565 |
+
self.p_dropout = p_dropout
|
| 566 |
+
self.resblock = resblock
|
| 567 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
| 568 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
| 569 |
+
self.upsample_rates = upsample_rates
|
| 570 |
+
self.upsample_initial_channel = upsample_initial_channel
|
| 571 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
| 572 |
+
self.segment_size = segment_size
|
| 573 |
+
self.gin_channels = gin_channels
|
| 574 |
+
# self.hop_length = hop_length#
|
| 575 |
+
self.spk_embed_dim = spk_embed_dim
|
| 576 |
+
self.enc_p = TextEncoder256(
|
| 577 |
+
inter_channels,
|
| 578 |
+
hidden_channels,
|
| 579 |
+
filter_channels,
|
| 580 |
+
n_heads,
|
| 581 |
+
n_layers,
|
| 582 |
+
kernel_size,
|
| 583 |
+
p_dropout,
|
| 584 |
+
)
|
| 585 |
+
self.dec = GeneratorNSF(
|
| 586 |
+
inter_channels,
|
| 587 |
+
resblock,
|
| 588 |
+
resblock_kernel_sizes,
|
| 589 |
+
resblock_dilation_sizes,
|
| 590 |
+
upsample_rates,
|
| 591 |
+
upsample_initial_channel,
|
| 592 |
+
upsample_kernel_sizes,
|
| 593 |
+
gin_channels=gin_channels,
|
| 594 |
+
sr=sr,
|
| 595 |
+
is_half=kwargs["is_half"],
|
| 596 |
+
)
|
| 597 |
+
self.enc_q = PosteriorEncoder(
|
| 598 |
+
spec_channels,
|
| 599 |
+
inter_channels,
|
| 600 |
+
hidden_channels,
|
| 601 |
+
5,
|
| 602 |
+
1,
|
| 603 |
+
16,
|
| 604 |
+
gin_channels=gin_channels,
|
| 605 |
+
)
|
| 606 |
+
self.flow = ResidualCouplingBlock(
|
| 607 |
+
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
| 608 |
+
)
|
| 609 |
+
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
| 610 |
+
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
| 611 |
+
|
| 612 |
+
def remove_weight_norm(self):
|
| 613 |
+
self.dec.remove_weight_norm()
|
| 614 |
+
self.flow.remove_weight_norm()
|
| 615 |
+
self.enc_q.remove_weight_norm()
|
| 616 |
+
|
| 617 |
+
def forward(
|
| 618 |
+
self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds
|
| 619 |
+
): # 这里ds是id,[bs,1]
|
| 620 |
+
# print(1,pitch.shape)#[bs,t]
|
| 621 |
+
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
| 622 |
+
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
| 623 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
| 624 |
+
z_p = self.flow(z, y_mask, g=g)
|
| 625 |
+
z_slice, ids_slice = commons.rand_slice_segments(
|
| 626 |
+
z, y_lengths, self.segment_size
|
| 627 |
+
)
|
| 628 |
+
# print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length)
|
| 629 |
+
pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
|
| 630 |
+
# print(-2,pitchf.shape,z_slice.shape)
|
| 631 |
+
o = self.dec(z_slice, pitchf, g=g)
|
| 632 |
+
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
| 633 |
+
|
| 634 |
+
def infer(self, phone, phone_lengths, pitch, nsff0, sid, max_len=None):
|
| 635 |
+
g = self.emb_g(sid).unsqueeze(-1)
|
| 636 |
+
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
| 637 |
+
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
| 638 |
+
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
| 639 |
+
o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
|
| 640 |
+
return o, x_mask, (z, z_p, m_p, logs_p)
|
| 641 |
+
|
| 642 |
+
|
| 643 |
+
class SynthesizerTrnMs768NSFsid(nn.Module):
|
| 644 |
+
def __init__(
|
| 645 |
+
self,
|
| 646 |
+
spec_channels,
|
| 647 |
+
segment_size,
|
| 648 |
+
inter_channels,
|
| 649 |
+
hidden_channels,
|
| 650 |
+
filter_channels,
|
| 651 |
+
n_heads,
|
| 652 |
+
n_layers,
|
| 653 |
+
kernel_size,
|
| 654 |
+
p_dropout,
|
| 655 |
+
resblock,
|
| 656 |
+
resblock_kernel_sizes,
|
| 657 |
+
resblock_dilation_sizes,
|
| 658 |
+
upsample_rates,
|
| 659 |
+
upsample_initial_channel,
|
| 660 |
+
upsample_kernel_sizes,
|
| 661 |
+
spk_embed_dim,
|
| 662 |
+
gin_channels,
|
| 663 |
+
sr,
|
| 664 |
+
**kwargs
|
| 665 |
+
):
|
| 666 |
+
super().__init__()
|
| 667 |
+
if type(sr) == type("strr"):
|
| 668 |
+
sr = sr2sr[sr]
|
| 669 |
+
self.spec_channels = spec_channels
|
| 670 |
+
self.inter_channels = inter_channels
|
| 671 |
+
self.hidden_channels = hidden_channels
|
| 672 |
+
self.filter_channels = filter_channels
|
| 673 |
+
self.n_heads = n_heads
|
| 674 |
+
self.n_layers = n_layers
|
| 675 |
+
self.kernel_size = kernel_size
|
| 676 |
+
self.p_dropout = p_dropout
|
| 677 |
+
self.resblock = resblock
|
| 678 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
| 679 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
| 680 |
+
self.upsample_rates = upsample_rates
|
| 681 |
+
self.upsample_initial_channel = upsample_initial_channel
|
| 682 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
| 683 |
+
self.segment_size = segment_size
|
| 684 |
+
self.gin_channels = gin_channels
|
| 685 |
+
# self.hop_length = hop_length#
|
| 686 |
+
self.spk_embed_dim = spk_embed_dim
|
| 687 |
+
self.enc_p = TextEncoder768(
|
| 688 |
+
inter_channels,
|
| 689 |
+
hidden_channels,
|
| 690 |
+
filter_channels,
|
| 691 |
+
n_heads,
|
| 692 |
+
n_layers,
|
| 693 |
+
kernel_size,
|
| 694 |
+
p_dropout,
|
| 695 |
+
)
|
| 696 |
+
self.dec = GeneratorNSF(
|
| 697 |
+
inter_channels,
|
| 698 |
+
resblock,
|
| 699 |
+
resblock_kernel_sizes,
|
| 700 |
+
resblock_dilation_sizes,
|
| 701 |
+
upsample_rates,
|
| 702 |
+
upsample_initial_channel,
|
| 703 |
+
upsample_kernel_sizes,
|
| 704 |
+
gin_channels=gin_channels,
|
| 705 |
+
sr=sr,
|
| 706 |
+
is_half=kwargs["is_half"],
|
| 707 |
+
)
|
| 708 |
+
self.enc_q = PosteriorEncoder(
|
| 709 |
+
spec_channels,
|
| 710 |
+
inter_channels,
|
| 711 |
+
hidden_channels,
|
| 712 |
+
5,
|
| 713 |
+
1,
|
| 714 |
+
16,
|
| 715 |
+
gin_channels=gin_channels,
|
| 716 |
+
)
|
| 717 |
+
self.flow = ResidualCouplingBlock(
|
| 718 |
+
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
| 719 |
+
)
|
| 720 |
+
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
| 721 |
+
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
| 722 |
+
|
| 723 |
+
def remove_weight_norm(self):
|
| 724 |
+
self.dec.remove_weight_norm()
|
| 725 |
+
self.flow.remove_weight_norm()
|
| 726 |
+
self.enc_q.remove_weight_norm()
|
| 727 |
+
|
| 728 |
+
def forward(
|
| 729 |
+
self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds
|
| 730 |
+
): # 这里ds是id,[bs,1]
|
| 731 |
+
# print(1,pitch.shape)#[bs,t]
|
| 732 |
+
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
| 733 |
+
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
| 734 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
| 735 |
+
z_p = self.flow(z, y_mask, g=g)
|
| 736 |
+
z_slice, ids_slice = commons.rand_slice_segments(
|
| 737 |
+
z, y_lengths, self.segment_size
|
| 738 |
+
)
|
| 739 |
+
# print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length)
|
| 740 |
+
pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
|
| 741 |
+
# print(-2,pitchf.shape,z_slice.shape)
|
| 742 |
+
o = self.dec(z_slice, pitchf, g=g)
|
| 743 |
+
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
| 744 |
+
|
| 745 |
+
def infer(self, phone, phone_lengths, pitch, nsff0, sid, max_len=None):
|
| 746 |
+
g = self.emb_g(sid).unsqueeze(-1)
|
| 747 |
+
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
| 748 |
+
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
| 749 |
+
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
| 750 |
+
o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
|
| 751 |
+
return o, x_mask, (z, z_p, m_p, logs_p)
|
| 752 |
+
|
| 753 |
+
|
| 754 |
+
class SynthesizerTrnMs256NSFsid_nono(nn.Module):
|
| 755 |
+
def __init__(
|
| 756 |
+
self,
|
| 757 |
+
spec_channels,
|
| 758 |
+
segment_size,
|
| 759 |
+
inter_channels,
|
| 760 |
+
hidden_channels,
|
| 761 |
+
filter_channels,
|
| 762 |
+
n_heads,
|
| 763 |
+
n_layers,
|
| 764 |
+
kernel_size,
|
| 765 |
+
p_dropout,
|
| 766 |
+
resblock,
|
| 767 |
+
resblock_kernel_sizes,
|
| 768 |
+
resblock_dilation_sizes,
|
| 769 |
+
upsample_rates,
|
| 770 |
+
upsample_initial_channel,
|
| 771 |
+
upsample_kernel_sizes,
|
| 772 |
+
spk_embed_dim,
|
| 773 |
+
gin_channels,
|
| 774 |
+
sr=None,
|
| 775 |
+
**kwargs
|
| 776 |
+
):
|
| 777 |
+
super().__init__()
|
| 778 |
+
self.spec_channels = spec_channels
|
| 779 |
+
self.inter_channels = inter_channels
|
| 780 |
+
self.hidden_channels = hidden_channels
|
| 781 |
+
self.filter_channels = filter_channels
|
| 782 |
+
self.n_heads = n_heads
|
| 783 |
+
self.n_layers = n_layers
|
| 784 |
+
self.kernel_size = kernel_size
|
| 785 |
+
self.p_dropout = p_dropout
|
| 786 |
+
self.resblock = resblock
|
| 787 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
| 788 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
| 789 |
+
self.upsample_rates = upsample_rates
|
| 790 |
+
self.upsample_initial_channel = upsample_initial_channel
|
| 791 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
| 792 |
+
self.segment_size = segment_size
|
| 793 |
+
self.gin_channels = gin_channels
|
| 794 |
+
# self.hop_length = hop_length#
|
| 795 |
+
self.spk_embed_dim = spk_embed_dim
|
| 796 |
+
self.enc_p = TextEncoder256(
|
| 797 |
+
inter_channels,
|
| 798 |
+
hidden_channels,
|
| 799 |
+
filter_channels,
|
| 800 |
+
n_heads,
|
| 801 |
+
n_layers,
|
| 802 |
+
kernel_size,
|
| 803 |
+
p_dropout,
|
| 804 |
+
f0=False,
|
| 805 |
+
)
|
| 806 |
+
self.dec = Generator(
|
| 807 |
+
inter_channels,
|
| 808 |
+
resblock,
|
| 809 |
+
resblock_kernel_sizes,
|
| 810 |
+
resblock_dilation_sizes,
|
| 811 |
+
upsample_rates,
|
| 812 |
+
upsample_initial_channel,
|
| 813 |
+
upsample_kernel_sizes,
|
| 814 |
+
gin_channels=gin_channels,
|
| 815 |
+
)
|
| 816 |
+
self.enc_q = PosteriorEncoder(
|
| 817 |
+
spec_channels,
|
| 818 |
+
inter_channels,
|
| 819 |
+
hidden_channels,
|
| 820 |
+
5,
|
| 821 |
+
1,
|
| 822 |
+
16,
|
| 823 |
+
gin_channels=gin_channels,
|
| 824 |
+
)
|
| 825 |
+
self.flow = ResidualCouplingBlock(
|
| 826 |
+
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
| 827 |
+
)
|
| 828 |
+
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
| 829 |
+
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
| 830 |
+
|
| 831 |
+
def remove_weight_norm(self):
|
| 832 |
+
self.dec.remove_weight_norm()
|
| 833 |
+
self.flow.remove_weight_norm()
|
| 834 |
+
self.enc_q.remove_weight_norm()
|
| 835 |
+
|
| 836 |
+
def forward(self, phone, phone_lengths, y, y_lengths, ds): # 这里ds是id,[bs,1]
|
| 837 |
+
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
| 838 |
+
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
| 839 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
| 840 |
+
z_p = self.flow(z, y_mask, g=g)
|
| 841 |
+
z_slice, ids_slice = commons.rand_slice_segments(
|
| 842 |
+
z, y_lengths, self.segment_size
|
| 843 |
+
)
|
| 844 |
+
o = self.dec(z_slice, g=g)
|
| 845 |
+
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
| 846 |
+
|
| 847 |
+
def infer(self, phone, phone_lengths, sid, max_len=None):
|
| 848 |
+
g = self.emb_g(sid).unsqueeze(-1)
|
| 849 |
+
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
| 850 |
+
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
| 851 |
+
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
| 852 |
+
o = self.dec((z * x_mask)[:, :, :max_len], g=g)
|
| 853 |
+
return o, x_mask, (z, z_p, m_p, logs_p)
|
| 854 |
+
|
| 855 |
+
|
| 856 |
+
class SynthesizerTrnMs768NSFsid_nono(nn.Module):
|
| 857 |
+
def __init__(
|
| 858 |
+
self,
|
| 859 |
+
spec_channels,
|
| 860 |
+
segment_size,
|
| 861 |
+
inter_channels,
|
| 862 |
+
hidden_channels,
|
| 863 |
+
filter_channels,
|
| 864 |
+
n_heads,
|
| 865 |
+
n_layers,
|
| 866 |
+
kernel_size,
|
| 867 |
+
p_dropout,
|
| 868 |
+
resblock,
|
| 869 |
+
resblock_kernel_sizes,
|
| 870 |
+
resblock_dilation_sizes,
|
| 871 |
+
upsample_rates,
|
| 872 |
+
upsample_initial_channel,
|
| 873 |
+
upsample_kernel_sizes,
|
| 874 |
+
spk_embed_dim,
|
| 875 |
+
gin_channels,
|
| 876 |
+
sr=None,
|
| 877 |
+
**kwargs
|
| 878 |
+
):
|
| 879 |
+
super().__init__()
|
| 880 |
+
self.spec_channels = spec_channels
|
| 881 |
+
self.inter_channels = inter_channels
|
| 882 |
+
self.hidden_channels = hidden_channels
|
| 883 |
+
self.filter_channels = filter_channels
|
| 884 |
+
self.n_heads = n_heads
|
| 885 |
+
self.n_layers = n_layers
|
| 886 |
+
self.kernel_size = kernel_size
|
| 887 |
+
self.p_dropout = p_dropout
|
| 888 |
+
self.resblock = resblock
|
| 889 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
| 890 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
| 891 |
+
self.upsample_rates = upsample_rates
|
| 892 |
+
self.upsample_initial_channel = upsample_initial_channel
|
| 893 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
| 894 |
+
self.segment_size = segment_size
|
| 895 |
+
self.gin_channels = gin_channels
|
| 896 |
+
# self.hop_length = hop_length#
|
| 897 |
+
self.spk_embed_dim = spk_embed_dim
|
| 898 |
+
self.enc_p = TextEncoder768(
|
| 899 |
+
inter_channels,
|
| 900 |
+
hidden_channels,
|
| 901 |
+
filter_channels,
|
| 902 |
+
n_heads,
|
| 903 |
+
n_layers,
|
| 904 |
+
kernel_size,
|
| 905 |
+
p_dropout,
|
| 906 |
+
f0=False,
|
| 907 |
+
)
|
| 908 |
+
self.dec = Generator(
|
| 909 |
+
inter_channels,
|
| 910 |
+
resblock,
|
| 911 |
+
resblock_kernel_sizes,
|
| 912 |
+
resblock_dilation_sizes,
|
| 913 |
+
upsample_rates,
|
| 914 |
+
upsample_initial_channel,
|
| 915 |
+
upsample_kernel_sizes,
|
| 916 |
+
gin_channels=gin_channels,
|
| 917 |
+
)
|
| 918 |
+
self.enc_q = PosteriorEncoder(
|
| 919 |
+
spec_channels,
|
| 920 |
+
inter_channels,
|
| 921 |
+
hidden_channels,
|
| 922 |
+
5,
|
| 923 |
+
1,
|
| 924 |
+
16,
|
| 925 |
+
gin_channels=gin_channels,
|
| 926 |
+
)
|
| 927 |
+
self.flow = ResidualCouplingBlock(
|
| 928 |
+
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
| 929 |
+
)
|
| 930 |
+
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
| 931 |
+
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
| 932 |
+
|
| 933 |
+
def remove_weight_norm(self):
|
| 934 |
+
self.dec.remove_weight_norm()
|
| 935 |
+
self.flow.remove_weight_norm()
|
| 936 |
+
self.enc_q.remove_weight_norm()
|
| 937 |
+
|
| 938 |
+
def forward(self, phone, phone_lengths, y, y_lengths, ds): # 这里ds是id,[bs,1]
|
| 939 |
+
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
| 940 |
+
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
| 941 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
| 942 |
+
z_p = self.flow(z, y_mask, g=g)
|
| 943 |
+
z_slice, ids_slice = commons.rand_slice_segments(
|
| 944 |
+
z, y_lengths, self.segment_size
|
| 945 |
+
)
|
| 946 |
+
o = self.dec(z_slice, g=g)
|
| 947 |
+
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
| 948 |
+
|
| 949 |
+
def infer(self, phone, phone_lengths, sid, max_len=None):
|
| 950 |
+
g = self.emb_g(sid).unsqueeze(-1)
|
| 951 |
+
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
| 952 |
+
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
| 953 |
+
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
| 954 |
+
o = self.dec((z * x_mask)[:, :, :max_len], g=g)
|
| 955 |
+
return o, x_mask, (z, z_p, m_p, logs_p)
|
| 956 |
+
|
| 957 |
+
|
| 958 |
+
class MultiPeriodDiscriminator(torch.nn.Module):
|
| 959 |
+
def __init__(self, use_spectral_norm=False):
|
| 960 |
+
super(MultiPeriodDiscriminator, self).__init__()
|
| 961 |
+
periods = [2, 3, 5, 7, 11, 17]
|
| 962 |
+
# periods = [3, 5, 7, 11, 17, 23, 37]
|
| 963 |
+
|
| 964 |
+
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
| 965 |
+
discs = discs + [
|
| 966 |
+
DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
|
| 967 |
+
]
|
| 968 |
+
self.discriminators = nn.ModuleList(discs)
|
| 969 |
+
|
| 970 |
+
def forward(self, y, y_hat):
|
| 971 |
+
y_d_rs = [] #
|
| 972 |
+
y_d_gs = []
|
| 973 |
+
fmap_rs = []
|
| 974 |
+
fmap_gs = []
|
| 975 |
+
for i, d in enumerate(self.discriminators):
|
| 976 |
+
y_d_r, fmap_r = d(y)
|
| 977 |
+
y_d_g, fmap_g = d(y_hat)
|
| 978 |
+
# for j in range(len(fmap_r)):
|
| 979 |
+
# print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
|
| 980 |
+
y_d_rs.append(y_d_r)
|
| 981 |
+
y_d_gs.append(y_d_g)
|
| 982 |
+
fmap_rs.append(fmap_r)
|
| 983 |
+
fmap_gs.append(fmap_g)
|
| 984 |
+
|
| 985 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
| 986 |
+
|
| 987 |
+
|
| 988 |
+
class MultiPeriodDiscriminatorV2(torch.nn.Module):
|
| 989 |
+
def __init__(self, use_spectral_norm=False):
|
| 990 |
+
super(MultiPeriodDiscriminatorV2, self).__init__()
|
| 991 |
+
# periods = [2, 3, 5, 7, 11, 17]
|
| 992 |
+
periods = [2, 3, 5, 7, 11, 17, 23, 37]
|
| 993 |
+
|
| 994 |
+
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
| 995 |
+
discs = discs + [
|
| 996 |
+
DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
|
| 997 |
+
]
|
| 998 |
+
self.discriminators = nn.ModuleList(discs)
|
| 999 |
+
|
| 1000 |
+
def forward(self, y, y_hat):
|
| 1001 |
+
y_d_rs = [] #
|
| 1002 |
+
y_d_gs = []
|
| 1003 |
+
fmap_rs = []
|
| 1004 |
+
fmap_gs = []
|
| 1005 |
+
for i, d in enumerate(self.discriminators):
|
| 1006 |
+
y_d_r, fmap_r = d(y)
|
| 1007 |
+
y_d_g, fmap_g = d(y_hat)
|
| 1008 |
+
# for j in range(len(fmap_r)):
|
| 1009 |
+
# print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
|
| 1010 |
+
y_d_rs.append(y_d_r)
|
| 1011 |
+
y_d_gs.append(y_d_g)
|
| 1012 |
+
fmap_rs.append(fmap_r)
|
| 1013 |
+
fmap_gs.append(fmap_g)
|
| 1014 |
+
|
| 1015 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
| 1016 |
+
|
| 1017 |
+
|
| 1018 |
+
class DiscriminatorS(torch.nn.Module):
|
| 1019 |
+
def __init__(self, use_spectral_norm=False):
|
| 1020 |
+
super(DiscriminatorS, self).__init__()
|
| 1021 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
| 1022 |
+
self.convs = nn.ModuleList(
|
| 1023 |
+
[
|
| 1024 |
+
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
| 1025 |
+
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
| 1026 |
+
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
|
| 1027 |
+
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
|
| 1028 |
+
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
|
| 1029 |
+
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
| 1030 |
+
]
|
| 1031 |
+
)
|
| 1032 |
+
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
| 1033 |
+
|
| 1034 |
+
def forward(self, x):
|
| 1035 |
+
fmap = []
|
| 1036 |
+
|
| 1037 |
+
for l in self.convs:
|
| 1038 |
+
x = l(x)
|
| 1039 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
| 1040 |
+
fmap.append(x)
|
| 1041 |
+
x = self.conv_post(x)
|
| 1042 |
+
fmap.append(x)
|
| 1043 |
+
x = torch.flatten(x, 1, -1)
|
| 1044 |
+
|
| 1045 |
+
return x, fmap
|
| 1046 |
+
|
| 1047 |
+
|
| 1048 |
+
class DiscriminatorP(torch.nn.Module):
|
| 1049 |
+
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
| 1050 |
+
super(DiscriminatorP, self).__init__()
|
| 1051 |
+
self.period = period
|
| 1052 |
+
self.use_spectral_norm = use_spectral_norm
|
| 1053 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
| 1054 |
+
self.convs = nn.ModuleList(
|
| 1055 |
+
[
|
| 1056 |
+
norm_f(
|
| 1057 |
+
Conv2d(
|
| 1058 |
+
1,
|
| 1059 |
+
32,
|
| 1060 |
+
(kernel_size, 1),
|
| 1061 |
+
(stride, 1),
|
| 1062 |
+
padding=(get_padding(kernel_size, 1), 0),
|
| 1063 |
+
)
|
| 1064 |
+
),
|
| 1065 |
+
norm_f(
|
| 1066 |
+
Conv2d(
|
| 1067 |
+
32,
|
| 1068 |
+
128,
|
| 1069 |
+
(kernel_size, 1),
|
| 1070 |
+
(stride, 1),
|
| 1071 |
+
padding=(get_padding(kernel_size, 1), 0),
|
| 1072 |
+
)
|
| 1073 |
+
),
|
| 1074 |
+
norm_f(
|
| 1075 |
+
Conv2d(
|
| 1076 |
+
128,
|
| 1077 |
+
512,
|
| 1078 |
+
(kernel_size, 1),
|
| 1079 |
+
(stride, 1),
|
| 1080 |
+
padding=(get_padding(kernel_size, 1), 0),
|
| 1081 |
+
)
|
| 1082 |
+
),
|
| 1083 |
+
norm_f(
|
| 1084 |
+
Conv2d(
|
| 1085 |
+
512,
|
| 1086 |
+
1024,
|
| 1087 |
+
(kernel_size, 1),
|
| 1088 |
+
(stride, 1),
|
| 1089 |
+
padding=(get_padding(kernel_size, 1), 0),
|
| 1090 |
+
)
|
| 1091 |
+
),
|
| 1092 |
+
norm_f(
|
| 1093 |
+
Conv2d(
|
| 1094 |
+
1024,
|
| 1095 |
+
1024,
|
| 1096 |
+
(kernel_size, 1),
|
| 1097 |
+
1,
|
| 1098 |
+
padding=(get_padding(kernel_size, 1), 0),
|
| 1099 |
+
)
|
| 1100 |
+
),
|
| 1101 |
+
]
|
| 1102 |
+
)
|
| 1103 |
+
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
| 1104 |
+
|
| 1105 |
+
def forward(self, x):
|
| 1106 |
+
fmap = []
|
| 1107 |
+
|
| 1108 |
+
# 1d to 2d
|
| 1109 |
+
b, c, t = x.shape
|
| 1110 |
+
if t % self.period != 0: # pad first
|
| 1111 |
+
n_pad = self.period - (t % self.period)
|
| 1112 |
+
x = F.pad(x, (0, n_pad), "reflect")
|
| 1113 |
+
t = t + n_pad
|
| 1114 |
+
x = x.view(b, c, t // self.period, self.period)
|
| 1115 |
+
|
| 1116 |
+
for l in self.convs:
|
| 1117 |
+
x = l(x)
|
| 1118 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
| 1119 |
+
fmap.append(x)
|
| 1120 |
+
x = self.conv_post(x)
|
| 1121 |
+
fmap.append(x)
|
| 1122 |
+
x = torch.flatten(x, 1, -1)
|
| 1123 |
+
|
| 1124 |
+
return x, fmap
|
infer_pack/models_onnx.py
ADDED
|
@@ -0,0 +1,818 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math, pdb, os
|
| 2 |
+
from time import time as ttime
|
| 3 |
+
import torch
|
| 4 |
+
from torch import nn
|
| 5 |
+
from torch.nn import functional as F
|
| 6 |
+
from infer_pack import modules
|
| 7 |
+
from infer_pack import attentions
|
| 8 |
+
from infer_pack import commons
|
| 9 |
+
from infer_pack.commons import init_weights, get_padding
|
| 10 |
+
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
| 11 |
+
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
| 12 |
+
from infer_pack.commons import init_weights
|
| 13 |
+
import numpy as np
|
| 14 |
+
from infer_pack import commons
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class TextEncoder256(nn.Module):
|
| 18 |
+
def __init__(
|
| 19 |
+
self,
|
| 20 |
+
out_channels,
|
| 21 |
+
hidden_channels,
|
| 22 |
+
filter_channels,
|
| 23 |
+
n_heads,
|
| 24 |
+
n_layers,
|
| 25 |
+
kernel_size,
|
| 26 |
+
p_dropout,
|
| 27 |
+
f0=True,
|
| 28 |
+
):
|
| 29 |
+
super().__init__()
|
| 30 |
+
self.out_channels = out_channels
|
| 31 |
+
self.hidden_channels = hidden_channels
|
| 32 |
+
self.filter_channels = filter_channels
|
| 33 |
+
self.n_heads = n_heads
|
| 34 |
+
self.n_layers = n_layers
|
| 35 |
+
self.kernel_size = kernel_size
|
| 36 |
+
self.p_dropout = p_dropout
|
| 37 |
+
self.emb_phone = nn.Linear(256, hidden_channels)
|
| 38 |
+
self.lrelu = nn.LeakyReLU(0.1, inplace=True)
|
| 39 |
+
if f0 == True:
|
| 40 |
+
self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
|
| 41 |
+
self.encoder = attentions.Encoder(
|
| 42 |
+
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
|
| 43 |
+
)
|
| 44 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
| 45 |
+
|
| 46 |
+
def forward(self, phone, pitch, lengths):
|
| 47 |
+
if pitch == None:
|
| 48 |
+
x = self.emb_phone(phone)
|
| 49 |
+
else:
|
| 50 |
+
x = self.emb_phone(phone) + self.emb_pitch(pitch)
|
| 51 |
+
x = x * math.sqrt(self.hidden_channels) # [b, t, h]
|
| 52 |
+
x = self.lrelu(x)
|
| 53 |
+
x = torch.transpose(x, 1, -1) # [b, h, t]
|
| 54 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
|
| 55 |
+
x.dtype
|
| 56 |
+
)
|
| 57 |
+
x = self.encoder(x * x_mask, x_mask)
|
| 58 |
+
stats = self.proj(x) * x_mask
|
| 59 |
+
|
| 60 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
| 61 |
+
return m, logs, x_mask
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
class TextEncoder768(nn.Module):
|
| 65 |
+
def __init__(
|
| 66 |
+
self,
|
| 67 |
+
out_channels,
|
| 68 |
+
hidden_channels,
|
| 69 |
+
filter_channels,
|
| 70 |
+
n_heads,
|
| 71 |
+
n_layers,
|
| 72 |
+
kernel_size,
|
| 73 |
+
p_dropout,
|
| 74 |
+
f0=True,
|
| 75 |
+
):
|
| 76 |
+
super().__init__()
|
| 77 |
+
self.out_channels = out_channels
|
| 78 |
+
self.hidden_channels = hidden_channels
|
| 79 |
+
self.filter_channels = filter_channels
|
| 80 |
+
self.n_heads = n_heads
|
| 81 |
+
self.n_layers = n_layers
|
| 82 |
+
self.kernel_size = kernel_size
|
| 83 |
+
self.p_dropout = p_dropout
|
| 84 |
+
self.emb_phone = nn.Linear(768, hidden_channels)
|
| 85 |
+
self.lrelu = nn.LeakyReLU(0.1, inplace=True)
|
| 86 |
+
if f0 == True:
|
| 87 |
+
self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
|
| 88 |
+
self.encoder = attentions.Encoder(
|
| 89 |
+
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
|
| 90 |
+
)
|
| 91 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
| 92 |
+
|
| 93 |
+
def forward(self, phone, pitch, lengths):
|
| 94 |
+
if pitch == None:
|
| 95 |
+
x = self.emb_phone(phone)
|
| 96 |
+
else:
|
| 97 |
+
x = self.emb_phone(phone) + self.emb_pitch(pitch)
|
| 98 |
+
x = x * math.sqrt(self.hidden_channels) # [b, t, h]
|
| 99 |
+
x = self.lrelu(x)
|
| 100 |
+
x = torch.transpose(x, 1, -1) # [b, h, t]
|
| 101 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
|
| 102 |
+
x.dtype
|
| 103 |
+
)
|
| 104 |
+
x = self.encoder(x * x_mask, x_mask)
|
| 105 |
+
stats = self.proj(x) * x_mask
|
| 106 |
+
|
| 107 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
| 108 |
+
return m, logs, x_mask
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
class ResidualCouplingBlock(nn.Module):
|
| 112 |
+
def __init__(
|
| 113 |
+
self,
|
| 114 |
+
channels,
|
| 115 |
+
hidden_channels,
|
| 116 |
+
kernel_size,
|
| 117 |
+
dilation_rate,
|
| 118 |
+
n_layers,
|
| 119 |
+
n_flows=4,
|
| 120 |
+
gin_channels=0,
|
| 121 |
+
):
|
| 122 |
+
super().__init__()
|
| 123 |
+
self.channels = channels
|
| 124 |
+
self.hidden_channels = hidden_channels
|
| 125 |
+
self.kernel_size = kernel_size
|
| 126 |
+
self.dilation_rate = dilation_rate
|
| 127 |
+
self.n_layers = n_layers
|
| 128 |
+
self.n_flows = n_flows
|
| 129 |
+
self.gin_channels = gin_channels
|
| 130 |
+
|
| 131 |
+
self.flows = nn.ModuleList()
|
| 132 |
+
for i in range(n_flows):
|
| 133 |
+
self.flows.append(
|
| 134 |
+
modules.ResidualCouplingLayer(
|
| 135 |
+
channels,
|
| 136 |
+
hidden_channels,
|
| 137 |
+
kernel_size,
|
| 138 |
+
dilation_rate,
|
| 139 |
+
n_layers,
|
| 140 |
+
gin_channels=gin_channels,
|
| 141 |
+
mean_only=True,
|
| 142 |
+
)
|
| 143 |
+
)
|
| 144 |
+
self.flows.append(modules.Flip())
|
| 145 |
+
|
| 146 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
| 147 |
+
if not reverse:
|
| 148 |
+
for flow in self.flows:
|
| 149 |
+
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
| 150 |
+
else:
|
| 151 |
+
for flow in reversed(self.flows):
|
| 152 |
+
x = flow(x, x_mask, g=g, reverse=reverse)
|
| 153 |
+
return x
|
| 154 |
+
|
| 155 |
+
def remove_weight_norm(self):
|
| 156 |
+
for i in range(self.n_flows):
|
| 157 |
+
self.flows[i * 2].remove_weight_norm()
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
class PosteriorEncoder(nn.Module):
|
| 161 |
+
def __init__(
|
| 162 |
+
self,
|
| 163 |
+
in_channels,
|
| 164 |
+
out_channels,
|
| 165 |
+
hidden_channels,
|
| 166 |
+
kernel_size,
|
| 167 |
+
dilation_rate,
|
| 168 |
+
n_layers,
|
| 169 |
+
gin_channels=0,
|
| 170 |
+
):
|
| 171 |
+
super().__init__()
|
| 172 |
+
self.in_channels = in_channels
|
| 173 |
+
self.out_channels = out_channels
|
| 174 |
+
self.hidden_channels = hidden_channels
|
| 175 |
+
self.kernel_size = kernel_size
|
| 176 |
+
self.dilation_rate = dilation_rate
|
| 177 |
+
self.n_layers = n_layers
|
| 178 |
+
self.gin_channels = gin_channels
|
| 179 |
+
|
| 180 |
+
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
| 181 |
+
self.enc = modules.WN(
|
| 182 |
+
hidden_channels,
|
| 183 |
+
kernel_size,
|
| 184 |
+
dilation_rate,
|
| 185 |
+
n_layers,
|
| 186 |
+
gin_channels=gin_channels,
|
| 187 |
+
)
|
| 188 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
| 189 |
+
|
| 190 |
+
def forward(self, x, x_lengths, g=None):
|
| 191 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
|
| 192 |
+
x.dtype
|
| 193 |
+
)
|
| 194 |
+
x = self.pre(x) * x_mask
|
| 195 |
+
x = self.enc(x, x_mask, g=g)
|
| 196 |
+
stats = self.proj(x) * x_mask
|
| 197 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
| 198 |
+
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
| 199 |
+
return z, m, logs, x_mask
|
| 200 |
+
|
| 201 |
+
def remove_weight_norm(self):
|
| 202 |
+
self.enc.remove_weight_norm()
|
| 203 |
+
|
| 204 |
+
|
| 205 |
+
class Generator(torch.nn.Module):
|
| 206 |
+
def __init__(
|
| 207 |
+
self,
|
| 208 |
+
initial_channel,
|
| 209 |
+
resblock,
|
| 210 |
+
resblock_kernel_sizes,
|
| 211 |
+
resblock_dilation_sizes,
|
| 212 |
+
upsample_rates,
|
| 213 |
+
upsample_initial_channel,
|
| 214 |
+
upsample_kernel_sizes,
|
| 215 |
+
gin_channels=0,
|
| 216 |
+
):
|
| 217 |
+
super(Generator, self).__init__()
|
| 218 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
| 219 |
+
self.num_upsamples = len(upsample_rates)
|
| 220 |
+
self.conv_pre = Conv1d(
|
| 221 |
+
initial_channel, upsample_initial_channel, 7, 1, padding=3
|
| 222 |
+
)
|
| 223 |
+
resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
|
| 224 |
+
|
| 225 |
+
self.ups = nn.ModuleList()
|
| 226 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
| 227 |
+
self.ups.append(
|
| 228 |
+
weight_norm(
|
| 229 |
+
ConvTranspose1d(
|
| 230 |
+
upsample_initial_channel // (2**i),
|
| 231 |
+
upsample_initial_channel // (2 ** (i + 1)),
|
| 232 |
+
k,
|
| 233 |
+
u,
|
| 234 |
+
padding=(k - u) // 2,
|
| 235 |
+
)
|
| 236 |
+
)
|
| 237 |
+
)
|
| 238 |
+
|
| 239 |
+
self.resblocks = nn.ModuleList()
|
| 240 |
+
for i in range(len(self.ups)):
|
| 241 |
+
ch = upsample_initial_channel // (2 ** (i + 1))
|
| 242 |
+
for j, (k, d) in enumerate(
|
| 243 |
+
zip(resblock_kernel_sizes, resblock_dilation_sizes)
|
| 244 |
+
):
|
| 245 |
+
self.resblocks.append(resblock(ch, k, d))
|
| 246 |
+
|
| 247 |
+
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
| 248 |
+
self.ups.apply(init_weights)
|
| 249 |
+
|
| 250 |
+
if gin_channels != 0:
|
| 251 |
+
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
| 252 |
+
|
| 253 |
+
def forward(self, x, g=None):
|
| 254 |
+
x = self.conv_pre(x)
|
| 255 |
+
if g is not None:
|
| 256 |
+
x = x + self.cond(g)
|
| 257 |
+
|
| 258 |
+
for i in range(self.num_upsamples):
|
| 259 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
| 260 |
+
x = self.ups[i](x)
|
| 261 |
+
xs = None
|
| 262 |
+
for j in range(self.num_kernels):
|
| 263 |
+
if xs is None:
|
| 264 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
| 265 |
+
else:
|
| 266 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
| 267 |
+
x = xs / self.num_kernels
|
| 268 |
+
x = F.leaky_relu(x)
|
| 269 |
+
x = self.conv_post(x)
|
| 270 |
+
x = torch.tanh(x)
|
| 271 |
+
|
| 272 |
+
return x
|
| 273 |
+
|
| 274 |
+
def remove_weight_norm(self):
|
| 275 |
+
for l in self.ups:
|
| 276 |
+
remove_weight_norm(l)
|
| 277 |
+
for l in self.resblocks:
|
| 278 |
+
l.remove_weight_norm()
|
| 279 |
+
|
| 280 |
+
|
| 281 |
+
class SineGen(torch.nn.Module):
|
| 282 |
+
"""Definition of sine generator
|
| 283 |
+
SineGen(samp_rate, harmonic_num = 0,
|
| 284 |
+
sine_amp = 0.1, noise_std = 0.003,
|
| 285 |
+
voiced_threshold = 0,
|
| 286 |
+
flag_for_pulse=False)
|
| 287 |
+
samp_rate: sampling rate in Hz
|
| 288 |
+
harmonic_num: number of harmonic overtones (default 0)
|
| 289 |
+
sine_amp: amplitude of sine-wavefrom (default 0.1)
|
| 290 |
+
noise_std: std of Gaussian noise (default 0.003)
|
| 291 |
+
voiced_thoreshold: F0 threshold for U/V classification (default 0)
|
| 292 |
+
flag_for_pulse: this SinGen is used inside PulseGen (default False)
|
| 293 |
+
Note: when flag_for_pulse is True, the first time step of a voiced
|
| 294 |
+
segment is always sin(np.pi) or cos(0)
|
| 295 |
+
"""
|
| 296 |
+
|
| 297 |
+
def __init__(
|
| 298 |
+
self,
|
| 299 |
+
samp_rate,
|
| 300 |
+
harmonic_num=0,
|
| 301 |
+
sine_amp=0.1,
|
| 302 |
+
noise_std=0.003,
|
| 303 |
+
voiced_threshold=0,
|
| 304 |
+
flag_for_pulse=False,
|
| 305 |
+
):
|
| 306 |
+
super(SineGen, self).__init__()
|
| 307 |
+
self.sine_amp = sine_amp
|
| 308 |
+
self.noise_std = noise_std
|
| 309 |
+
self.harmonic_num = harmonic_num
|
| 310 |
+
self.dim = self.harmonic_num + 1
|
| 311 |
+
self.sampling_rate = samp_rate
|
| 312 |
+
self.voiced_threshold = voiced_threshold
|
| 313 |
+
|
| 314 |
+
def _f02uv(self, f0):
|
| 315 |
+
# generate uv signal
|
| 316 |
+
uv = torch.ones_like(f0)
|
| 317 |
+
uv = uv * (f0 > self.voiced_threshold)
|
| 318 |
+
return uv
|
| 319 |
+
|
| 320 |
+
def forward(self, f0, upp):
|
| 321 |
+
"""sine_tensor, uv = forward(f0)
|
| 322 |
+
input F0: tensor(batchsize=1, length, dim=1)
|
| 323 |
+
f0 for unvoiced steps should be 0
|
| 324 |
+
output sine_tensor: tensor(batchsize=1, length, dim)
|
| 325 |
+
output uv: tensor(batchsize=1, length, 1)
|
| 326 |
+
"""
|
| 327 |
+
with torch.no_grad():
|
| 328 |
+
f0 = f0[:, None].transpose(1, 2)
|
| 329 |
+
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
|
| 330 |
+
# fundamental component
|
| 331 |
+
f0_buf[:, :, 0] = f0[:, :, 0]
|
| 332 |
+
for idx in np.arange(self.harmonic_num):
|
| 333 |
+
f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (
|
| 334 |
+
idx + 2
|
| 335 |
+
) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
|
| 336 |
+
rad_values = (f0_buf / self.sampling_rate) % 1 ###%1意味着n_har的乘积无法后处理优化
|
| 337 |
+
rand_ini = torch.rand(
|
| 338 |
+
f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device
|
| 339 |
+
)
|
| 340 |
+
rand_ini[:, 0] = 0
|
| 341 |
+
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
|
| 342 |
+
tmp_over_one = torch.cumsum(rad_values, 1) # % 1 #####%1意味着后面的cumsum无法再优化
|
| 343 |
+
tmp_over_one *= upp
|
| 344 |
+
tmp_over_one = F.interpolate(
|
| 345 |
+
tmp_over_one.transpose(2, 1),
|
| 346 |
+
scale_factor=upp,
|
| 347 |
+
mode="linear",
|
| 348 |
+
align_corners=True,
|
| 349 |
+
).transpose(2, 1)
|
| 350 |
+
rad_values = F.interpolate(
|
| 351 |
+
rad_values.transpose(2, 1), scale_factor=upp, mode="nearest"
|
| 352 |
+
).transpose(
|
| 353 |
+
2, 1
|
| 354 |
+
) #######
|
| 355 |
+
tmp_over_one %= 1
|
| 356 |
+
tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
|
| 357 |
+
cumsum_shift = torch.zeros_like(rad_values)
|
| 358 |
+
cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
|
| 359 |
+
sine_waves = torch.sin(
|
| 360 |
+
torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi
|
| 361 |
+
)
|
| 362 |
+
sine_waves = sine_waves * self.sine_amp
|
| 363 |
+
uv = self._f02uv(f0)
|
| 364 |
+
uv = F.interpolate(
|
| 365 |
+
uv.transpose(2, 1), scale_factor=upp, mode="nearest"
|
| 366 |
+
).transpose(2, 1)
|
| 367 |
+
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
|
| 368 |
+
noise = noise_amp * torch.randn_like(sine_waves)
|
| 369 |
+
sine_waves = sine_waves * uv + noise
|
| 370 |
+
return sine_waves, uv, noise
|
| 371 |
+
|
| 372 |
+
|
| 373 |
+
class SourceModuleHnNSF(torch.nn.Module):
|
| 374 |
+
"""SourceModule for hn-nsf
|
| 375 |
+
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
|
| 376 |
+
add_noise_std=0.003, voiced_threshod=0)
|
| 377 |
+
sampling_rate: sampling_rate in Hz
|
| 378 |
+
harmonic_num: number of harmonic above F0 (default: 0)
|
| 379 |
+
sine_amp: amplitude of sine source signal (default: 0.1)
|
| 380 |
+
add_noise_std: std of additive Gaussian noise (default: 0.003)
|
| 381 |
+
note that amplitude of noise in unvoiced is decided
|
| 382 |
+
by sine_amp
|
| 383 |
+
voiced_threshold: threhold to set U/V given F0 (default: 0)
|
| 384 |
+
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
| 385 |
+
F0_sampled (batchsize, length, 1)
|
| 386 |
+
Sine_source (batchsize, length, 1)
|
| 387 |
+
noise_source (batchsize, length 1)
|
| 388 |
+
uv (batchsize, length, 1)
|
| 389 |
+
"""
|
| 390 |
+
|
| 391 |
+
def __init__(
|
| 392 |
+
self,
|
| 393 |
+
sampling_rate,
|
| 394 |
+
harmonic_num=0,
|
| 395 |
+
sine_amp=0.1,
|
| 396 |
+
add_noise_std=0.003,
|
| 397 |
+
voiced_threshod=0,
|
| 398 |
+
is_half=True,
|
| 399 |
+
):
|
| 400 |
+
super(SourceModuleHnNSF, self).__init__()
|
| 401 |
+
|
| 402 |
+
self.sine_amp = sine_amp
|
| 403 |
+
self.noise_std = add_noise_std
|
| 404 |
+
self.is_half = is_half
|
| 405 |
+
# to produce sine waveforms
|
| 406 |
+
self.l_sin_gen = SineGen(
|
| 407 |
+
sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod
|
| 408 |
+
)
|
| 409 |
+
|
| 410 |
+
# to merge source harmonics into a single excitation
|
| 411 |
+
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
|
| 412 |
+
self.l_tanh = torch.nn.Tanh()
|
| 413 |
+
|
| 414 |
+
def forward(self, x, upp=None):
|
| 415 |
+
sine_wavs, uv, _ = self.l_sin_gen(x, upp)
|
| 416 |
+
if self.is_half:
|
| 417 |
+
sine_wavs = sine_wavs.half()
|
| 418 |
+
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
|
| 419 |
+
return sine_merge, None, None # noise, uv
|
| 420 |
+
|
| 421 |
+
|
| 422 |
+
class GeneratorNSF(torch.nn.Module):
|
| 423 |
+
def __init__(
|
| 424 |
+
self,
|
| 425 |
+
initial_channel,
|
| 426 |
+
resblock,
|
| 427 |
+
resblock_kernel_sizes,
|
| 428 |
+
resblock_dilation_sizes,
|
| 429 |
+
upsample_rates,
|
| 430 |
+
upsample_initial_channel,
|
| 431 |
+
upsample_kernel_sizes,
|
| 432 |
+
gin_channels,
|
| 433 |
+
sr,
|
| 434 |
+
is_half=False,
|
| 435 |
+
):
|
| 436 |
+
super(GeneratorNSF, self).__init__()
|
| 437 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
| 438 |
+
self.num_upsamples = len(upsample_rates)
|
| 439 |
+
|
| 440 |
+
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
|
| 441 |
+
self.m_source = SourceModuleHnNSF(
|
| 442 |
+
sampling_rate=sr, harmonic_num=0, is_half=is_half
|
| 443 |
+
)
|
| 444 |
+
self.noise_convs = nn.ModuleList()
|
| 445 |
+
self.conv_pre = Conv1d(
|
| 446 |
+
initial_channel, upsample_initial_channel, 7, 1, padding=3
|
| 447 |
+
)
|
| 448 |
+
resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
|
| 449 |
+
|
| 450 |
+
self.ups = nn.ModuleList()
|
| 451 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
| 452 |
+
c_cur = upsample_initial_channel // (2 ** (i + 1))
|
| 453 |
+
self.ups.append(
|
| 454 |
+
weight_norm(
|
| 455 |
+
ConvTranspose1d(
|
| 456 |
+
upsample_initial_channel // (2**i),
|
| 457 |
+
upsample_initial_channel // (2 ** (i + 1)),
|
| 458 |
+
k,
|
| 459 |
+
u,
|
| 460 |
+
padding=(k - u) // 2,
|
| 461 |
+
)
|
| 462 |
+
)
|
| 463 |
+
)
|
| 464 |
+
if i + 1 < len(upsample_rates):
|
| 465 |
+
stride_f0 = np.prod(upsample_rates[i + 1 :])
|
| 466 |
+
self.noise_convs.append(
|
| 467 |
+
Conv1d(
|
| 468 |
+
1,
|
| 469 |
+
c_cur,
|
| 470 |
+
kernel_size=stride_f0 * 2,
|
| 471 |
+
stride=stride_f0,
|
| 472 |
+
padding=stride_f0 // 2,
|
| 473 |
+
)
|
| 474 |
+
)
|
| 475 |
+
else:
|
| 476 |
+
self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
|
| 477 |
+
|
| 478 |
+
self.resblocks = nn.ModuleList()
|
| 479 |
+
for i in range(len(self.ups)):
|
| 480 |
+
ch = upsample_initial_channel // (2 ** (i + 1))
|
| 481 |
+
for j, (k, d) in enumerate(
|
| 482 |
+
zip(resblock_kernel_sizes, resblock_dilation_sizes)
|
| 483 |
+
):
|
| 484 |
+
self.resblocks.append(resblock(ch, k, d))
|
| 485 |
+
|
| 486 |
+
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
| 487 |
+
self.ups.apply(init_weights)
|
| 488 |
+
|
| 489 |
+
if gin_channels != 0:
|
| 490 |
+
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
| 491 |
+
|
| 492 |
+
self.upp = np.prod(upsample_rates)
|
| 493 |
+
|
| 494 |
+
def forward(self, x, f0, g=None):
|
| 495 |
+
har_source, noi_source, uv = self.m_source(f0, self.upp)
|
| 496 |
+
har_source = har_source.transpose(1, 2)
|
| 497 |
+
x = self.conv_pre(x)
|
| 498 |
+
if g is not None:
|
| 499 |
+
x = x + self.cond(g)
|
| 500 |
+
|
| 501 |
+
for i in range(self.num_upsamples):
|
| 502 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
| 503 |
+
x = self.ups[i](x)
|
| 504 |
+
x_source = self.noise_convs[i](har_source)
|
| 505 |
+
x = x + x_source
|
| 506 |
+
xs = None
|
| 507 |
+
for j in range(self.num_kernels):
|
| 508 |
+
if xs is None:
|
| 509 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
| 510 |
+
else:
|
| 511 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
| 512 |
+
x = xs / self.num_kernels
|
| 513 |
+
x = F.leaky_relu(x)
|
| 514 |
+
x = self.conv_post(x)
|
| 515 |
+
x = torch.tanh(x)
|
| 516 |
+
return x
|
| 517 |
+
|
| 518 |
+
def remove_weight_norm(self):
|
| 519 |
+
for l in self.ups:
|
| 520 |
+
remove_weight_norm(l)
|
| 521 |
+
for l in self.resblocks:
|
| 522 |
+
l.remove_weight_norm()
|
| 523 |
+
|
| 524 |
+
|
| 525 |
+
sr2sr = {
|
| 526 |
+
"32k": 32000,
|
| 527 |
+
"40k": 40000,
|
| 528 |
+
"48k": 48000,
|
| 529 |
+
}
|
| 530 |
+
|
| 531 |
+
|
| 532 |
+
class SynthesizerTrnMsNSFsidM(nn.Module):
|
| 533 |
+
def __init__(
|
| 534 |
+
self,
|
| 535 |
+
spec_channels,
|
| 536 |
+
segment_size,
|
| 537 |
+
inter_channels,
|
| 538 |
+
hidden_channels,
|
| 539 |
+
filter_channels,
|
| 540 |
+
n_heads,
|
| 541 |
+
n_layers,
|
| 542 |
+
kernel_size,
|
| 543 |
+
p_dropout,
|
| 544 |
+
resblock,
|
| 545 |
+
resblock_kernel_sizes,
|
| 546 |
+
resblock_dilation_sizes,
|
| 547 |
+
upsample_rates,
|
| 548 |
+
upsample_initial_channel,
|
| 549 |
+
upsample_kernel_sizes,
|
| 550 |
+
spk_embed_dim,
|
| 551 |
+
gin_channels,
|
| 552 |
+
sr,
|
| 553 |
+
**kwargs
|
| 554 |
+
):
|
| 555 |
+
super().__init__()
|
| 556 |
+
if type(sr) == type("strr"):
|
| 557 |
+
sr = sr2sr[sr]
|
| 558 |
+
self.spec_channels = spec_channels
|
| 559 |
+
self.inter_channels = inter_channels
|
| 560 |
+
self.hidden_channels = hidden_channels
|
| 561 |
+
self.filter_channels = filter_channels
|
| 562 |
+
self.n_heads = n_heads
|
| 563 |
+
self.n_layers = n_layers
|
| 564 |
+
self.kernel_size = kernel_size
|
| 565 |
+
self.p_dropout = p_dropout
|
| 566 |
+
self.resblock = resblock
|
| 567 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
| 568 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
| 569 |
+
self.upsample_rates = upsample_rates
|
| 570 |
+
self.upsample_initial_channel = upsample_initial_channel
|
| 571 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
| 572 |
+
self.segment_size = segment_size
|
| 573 |
+
self.gin_channels = gin_channels
|
| 574 |
+
# self.hop_length = hop_length#
|
| 575 |
+
self.spk_embed_dim = spk_embed_dim
|
| 576 |
+
if self.gin_channels == 256:
|
| 577 |
+
self.enc_p = TextEncoder256(
|
| 578 |
+
inter_channels,
|
| 579 |
+
hidden_channels,
|
| 580 |
+
filter_channels,
|
| 581 |
+
n_heads,
|
| 582 |
+
n_layers,
|
| 583 |
+
kernel_size,
|
| 584 |
+
p_dropout,
|
| 585 |
+
)
|
| 586 |
+
else:
|
| 587 |
+
self.enc_p = TextEncoder768(
|
| 588 |
+
inter_channels,
|
| 589 |
+
hidden_channels,
|
| 590 |
+
filter_channels,
|
| 591 |
+
n_heads,
|
| 592 |
+
n_layers,
|
| 593 |
+
kernel_size,
|
| 594 |
+
p_dropout,
|
| 595 |
+
)
|
| 596 |
+
self.dec = GeneratorNSF(
|
| 597 |
+
inter_channels,
|
| 598 |
+
resblock,
|
| 599 |
+
resblock_kernel_sizes,
|
| 600 |
+
resblock_dilation_sizes,
|
| 601 |
+
upsample_rates,
|
| 602 |
+
upsample_initial_channel,
|
| 603 |
+
upsample_kernel_sizes,
|
| 604 |
+
gin_channels=gin_channels,
|
| 605 |
+
sr=sr,
|
| 606 |
+
is_half=kwargs["is_half"],
|
| 607 |
+
)
|
| 608 |
+
self.enc_q = PosteriorEncoder(
|
| 609 |
+
spec_channels,
|
| 610 |
+
inter_channels,
|
| 611 |
+
hidden_channels,
|
| 612 |
+
5,
|
| 613 |
+
1,
|
| 614 |
+
16,
|
| 615 |
+
gin_channels=gin_channels,
|
| 616 |
+
)
|
| 617 |
+
self.flow = ResidualCouplingBlock(
|
| 618 |
+
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
| 619 |
+
)
|
| 620 |
+
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
| 621 |
+
self.speaker_map = None
|
| 622 |
+
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
| 623 |
+
|
| 624 |
+
def remove_weight_norm(self):
|
| 625 |
+
self.dec.remove_weight_norm()
|
| 626 |
+
self.flow.remove_weight_norm()
|
| 627 |
+
self.enc_q.remove_weight_norm()
|
| 628 |
+
|
| 629 |
+
def construct_spkmixmap(self, n_speaker):
|
| 630 |
+
self.speaker_map = torch.zeros((n_speaker, 1, 1, self.gin_channels))
|
| 631 |
+
for i in range(n_speaker):
|
| 632 |
+
self.speaker_map[i] = self.emb_g(torch.LongTensor([[i]]))
|
| 633 |
+
self.speaker_map = self.speaker_map.unsqueeze(0)
|
| 634 |
+
|
| 635 |
+
def forward(self, phone, phone_lengths, pitch, nsff0, g, rnd, max_len=None):
|
| 636 |
+
if self.speaker_map is not None: # [N, S] * [S, B, 1, H]
|
| 637 |
+
g = g.reshape((g.shape[0], g.shape[1], 1, 1, 1)) # [N, S, B, 1, 1]
|
| 638 |
+
g = g * self.speaker_map # [N, S, B, 1, H]
|
| 639 |
+
g = torch.sum(g, dim=1) # [N, 1, B, 1, H]
|
| 640 |
+
g = g.transpose(0, -1).transpose(0, -2).squeeze(0) # [B, H, N]
|
| 641 |
+
else:
|
| 642 |
+
g = g.unsqueeze(0)
|
| 643 |
+
g = self.emb_g(g).transpose(1, 2)
|
| 644 |
+
|
| 645 |
+
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
| 646 |
+
z_p = (m_p + torch.exp(logs_p) * rnd) * x_mask
|
| 647 |
+
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
| 648 |
+
o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
|
| 649 |
+
return o
|
| 650 |
+
|
| 651 |
+
|
| 652 |
+
class MultiPeriodDiscriminator(torch.nn.Module):
|
| 653 |
+
def __init__(self, use_spectral_norm=False):
|
| 654 |
+
super(MultiPeriodDiscriminator, self).__init__()
|
| 655 |
+
periods = [2, 3, 5, 7, 11, 17]
|
| 656 |
+
# periods = [3, 5, 7, 11, 17, 23, 37]
|
| 657 |
+
|
| 658 |
+
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
| 659 |
+
discs = discs + [
|
| 660 |
+
DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
|
| 661 |
+
]
|
| 662 |
+
self.discriminators = nn.ModuleList(discs)
|
| 663 |
+
|
| 664 |
+
def forward(self, y, y_hat):
|
| 665 |
+
y_d_rs = [] #
|
| 666 |
+
y_d_gs = []
|
| 667 |
+
fmap_rs = []
|
| 668 |
+
fmap_gs = []
|
| 669 |
+
for i, d in enumerate(self.discriminators):
|
| 670 |
+
y_d_r, fmap_r = d(y)
|
| 671 |
+
y_d_g, fmap_g = d(y_hat)
|
| 672 |
+
# for j in range(len(fmap_r)):
|
| 673 |
+
# print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
|
| 674 |
+
y_d_rs.append(y_d_r)
|
| 675 |
+
y_d_gs.append(y_d_g)
|
| 676 |
+
fmap_rs.append(fmap_r)
|
| 677 |
+
fmap_gs.append(fmap_g)
|
| 678 |
+
|
| 679 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
| 680 |
+
|
| 681 |
+
|
| 682 |
+
class MultiPeriodDiscriminatorV2(torch.nn.Module):
|
| 683 |
+
def __init__(self, use_spectral_norm=False):
|
| 684 |
+
super(MultiPeriodDiscriminatorV2, self).__init__()
|
| 685 |
+
# periods = [2, 3, 5, 7, 11, 17]
|
| 686 |
+
periods = [2, 3, 5, 7, 11, 17, 23, 37]
|
| 687 |
+
|
| 688 |
+
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
| 689 |
+
discs = discs + [
|
| 690 |
+
DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
|
| 691 |
+
]
|
| 692 |
+
self.discriminators = nn.ModuleList(discs)
|
| 693 |
+
|
| 694 |
+
def forward(self, y, y_hat):
|
| 695 |
+
y_d_rs = [] #
|
| 696 |
+
y_d_gs = []
|
| 697 |
+
fmap_rs = []
|
| 698 |
+
fmap_gs = []
|
| 699 |
+
for i, d in enumerate(self.discriminators):
|
| 700 |
+
y_d_r, fmap_r = d(y)
|
| 701 |
+
y_d_g, fmap_g = d(y_hat)
|
| 702 |
+
# for j in range(len(fmap_r)):
|
| 703 |
+
# print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
|
| 704 |
+
y_d_rs.append(y_d_r)
|
| 705 |
+
y_d_gs.append(y_d_g)
|
| 706 |
+
fmap_rs.append(fmap_r)
|
| 707 |
+
fmap_gs.append(fmap_g)
|
| 708 |
+
|
| 709 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
| 710 |
+
|
| 711 |
+
|
| 712 |
+
class DiscriminatorS(torch.nn.Module):
|
| 713 |
+
def __init__(self, use_spectral_norm=False):
|
| 714 |
+
super(DiscriminatorS, self).__init__()
|
| 715 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
| 716 |
+
self.convs = nn.ModuleList(
|
| 717 |
+
[
|
| 718 |
+
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
| 719 |
+
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
| 720 |
+
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
|
| 721 |
+
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
|
| 722 |
+
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
|
| 723 |
+
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
| 724 |
+
]
|
| 725 |
+
)
|
| 726 |
+
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
| 727 |
+
|
| 728 |
+
def forward(self, x):
|
| 729 |
+
fmap = []
|
| 730 |
+
|
| 731 |
+
for l in self.convs:
|
| 732 |
+
x = l(x)
|
| 733 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
| 734 |
+
fmap.append(x)
|
| 735 |
+
x = self.conv_post(x)
|
| 736 |
+
fmap.append(x)
|
| 737 |
+
x = torch.flatten(x, 1, -1)
|
| 738 |
+
|
| 739 |
+
return x, fmap
|
| 740 |
+
|
| 741 |
+
|
| 742 |
+
class DiscriminatorP(torch.nn.Module):
|
| 743 |
+
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
| 744 |
+
super(DiscriminatorP, self).__init__()
|
| 745 |
+
self.period = period
|
| 746 |
+
self.use_spectral_norm = use_spectral_norm
|
| 747 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
| 748 |
+
self.convs = nn.ModuleList(
|
| 749 |
+
[
|
| 750 |
+
norm_f(
|
| 751 |
+
Conv2d(
|
| 752 |
+
1,
|
| 753 |
+
32,
|
| 754 |
+
(kernel_size, 1),
|
| 755 |
+
(stride, 1),
|
| 756 |
+
padding=(get_padding(kernel_size, 1), 0),
|
| 757 |
+
)
|
| 758 |
+
),
|
| 759 |
+
norm_f(
|
| 760 |
+
Conv2d(
|
| 761 |
+
32,
|
| 762 |
+
128,
|
| 763 |
+
(kernel_size, 1),
|
| 764 |
+
(stride, 1),
|
| 765 |
+
padding=(get_padding(kernel_size, 1), 0),
|
| 766 |
+
)
|
| 767 |
+
),
|
| 768 |
+
norm_f(
|
| 769 |
+
Conv2d(
|
| 770 |
+
128,
|
| 771 |
+
512,
|
| 772 |
+
(kernel_size, 1),
|
| 773 |
+
(stride, 1),
|
| 774 |
+
padding=(get_padding(kernel_size, 1), 0),
|
| 775 |
+
)
|
| 776 |
+
),
|
| 777 |
+
norm_f(
|
| 778 |
+
Conv2d(
|
| 779 |
+
512,
|
| 780 |
+
1024,
|
| 781 |
+
(kernel_size, 1),
|
| 782 |
+
(stride, 1),
|
| 783 |
+
padding=(get_padding(kernel_size, 1), 0),
|
| 784 |
+
)
|
| 785 |
+
),
|
| 786 |
+
norm_f(
|
| 787 |
+
Conv2d(
|
| 788 |
+
1024,
|
| 789 |
+
1024,
|
| 790 |
+
(kernel_size, 1),
|
| 791 |
+
1,
|
| 792 |
+
padding=(get_padding(kernel_size, 1), 0),
|
| 793 |
+
)
|
| 794 |
+
),
|
| 795 |
+
]
|
| 796 |
+
)
|
| 797 |
+
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
| 798 |
+
|
| 799 |
+
def forward(self, x):
|
| 800 |
+
fmap = []
|
| 801 |
+
|
| 802 |
+
# 1d to 2d
|
| 803 |
+
b, c, t = x.shape
|
| 804 |
+
if t % self.period != 0: # pad first
|
| 805 |
+
n_pad = self.period - (t % self.period)
|
| 806 |
+
x = F.pad(x, (0, n_pad), "reflect")
|
| 807 |
+
t = t + n_pad
|
| 808 |
+
x = x.view(b, c, t // self.period, self.period)
|
| 809 |
+
|
| 810 |
+
for l in self.convs:
|
| 811 |
+
x = l(x)
|
| 812 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
| 813 |
+
fmap.append(x)
|
| 814 |
+
x = self.conv_post(x)
|
| 815 |
+
fmap.append(x)
|
| 816 |
+
x = torch.flatten(x, 1, -1)
|
| 817 |
+
|
| 818 |
+
return x, fmap
|
infer_pack/modules.py
ADDED
|
@@ -0,0 +1,522 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import copy
|
| 2 |
+
import math
|
| 3 |
+
import numpy as np
|
| 4 |
+
import scipy
|
| 5 |
+
import torch
|
| 6 |
+
from torch import nn
|
| 7 |
+
from torch.nn import functional as F
|
| 8 |
+
|
| 9 |
+
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
| 10 |
+
from torch.nn.utils import weight_norm, remove_weight_norm
|
| 11 |
+
|
| 12 |
+
from infer_pack import commons
|
| 13 |
+
from infer_pack.commons import init_weights, get_padding
|
| 14 |
+
from infer_pack.transforms import piecewise_rational_quadratic_transform
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
LRELU_SLOPE = 0.1
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
class LayerNorm(nn.Module):
|
| 21 |
+
def __init__(self, channels, eps=1e-5):
|
| 22 |
+
super().__init__()
|
| 23 |
+
self.channels = channels
|
| 24 |
+
self.eps = eps
|
| 25 |
+
|
| 26 |
+
self.gamma = nn.Parameter(torch.ones(channels))
|
| 27 |
+
self.beta = nn.Parameter(torch.zeros(channels))
|
| 28 |
+
|
| 29 |
+
def forward(self, x):
|
| 30 |
+
x = x.transpose(1, -1)
|
| 31 |
+
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
| 32 |
+
return x.transpose(1, -1)
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
class ConvReluNorm(nn.Module):
|
| 36 |
+
def __init__(
|
| 37 |
+
self,
|
| 38 |
+
in_channels,
|
| 39 |
+
hidden_channels,
|
| 40 |
+
out_channels,
|
| 41 |
+
kernel_size,
|
| 42 |
+
n_layers,
|
| 43 |
+
p_dropout,
|
| 44 |
+
):
|
| 45 |
+
super().__init__()
|
| 46 |
+
self.in_channels = in_channels
|
| 47 |
+
self.hidden_channels = hidden_channels
|
| 48 |
+
self.out_channels = out_channels
|
| 49 |
+
self.kernel_size = kernel_size
|
| 50 |
+
self.n_layers = n_layers
|
| 51 |
+
self.p_dropout = p_dropout
|
| 52 |
+
assert n_layers > 1, "Number of layers should be larger than 0."
|
| 53 |
+
|
| 54 |
+
self.conv_layers = nn.ModuleList()
|
| 55 |
+
self.norm_layers = nn.ModuleList()
|
| 56 |
+
self.conv_layers.append(
|
| 57 |
+
nn.Conv1d(
|
| 58 |
+
in_channels, hidden_channels, kernel_size, padding=kernel_size // 2
|
| 59 |
+
)
|
| 60 |
+
)
|
| 61 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
| 62 |
+
self.relu_drop = nn.Sequential(nn.ReLU(), nn.Dropout(p_dropout))
|
| 63 |
+
for _ in range(n_layers - 1):
|
| 64 |
+
self.conv_layers.append(
|
| 65 |
+
nn.Conv1d(
|
| 66 |
+
hidden_channels,
|
| 67 |
+
hidden_channels,
|
| 68 |
+
kernel_size,
|
| 69 |
+
padding=kernel_size // 2,
|
| 70 |
+
)
|
| 71 |
+
)
|
| 72 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
| 73 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
| 74 |
+
self.proj.weight.data.zero_()
|
| 75 |
+
self.proj.bias.data.zero_()
|
| 76 |
+
|
| 77 |
+
def forward(self, x, x_mask):
|
| 78 |
+
x_org = x
|
| 79 |
+
for i in range(self.n_layers):
|
| 80 |
+
x = self.conv_layers[i](x * x_mask)
|
| 81 |
+
x = self.norm_layers[i](x)
|
| 82 |
+
x = self.relu_drop(x)
|
| 83 |
+
x = x_org + self.proj(x)
|
| 84 |
+
return x * x_mask
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
class DDSConv(nn.Module):
|
| 88 |
+
"""
|
| 89 |
+
Dialted and Depth-Separable Convolution
|
| 90 |
+
"""
|
| 91 |
+
|
| 92 |
+
def __init__(self, channels, kernel_size, n_layers, p_dropout=0.0):
|
| 93 |
+
super().__init__()
|
| 94 |
+
self.channels = channels
|
| 95 |
+
self.kernel_size = kernel_size
|
| 96 |
+
self.n_layers = n_layers
|
| 97 |
+
self.p_dropout = p_dropout
|
| 98 |
+
|
| 99 |
+
self.drop = nn.Dropout(p_dropout)
|
| 100 |
+
self.convs_sep = nn.ModuleList()
|
| 101 |
+
self.convs_1x1 = nn.ModuleList()
|
| 102 |
+
self.norms_1 = nn.ModuleList()
|
| 103 |
+
self.norms_2 = nn.ModuleList()
|
| 104 |
+
for i in range(n_layers):
|
| 105 |
+
dilation = kernel_size**i
|
| 106 |
+
padding = (kernel_size * dilation - dilation) // 2
|
| 107 |
+
self.convs_sep.append(
|
| 108 |
+
nn.Conv1d(
|
| 109 |
+
channels,
|
| 110 |
+
channels,
|
| 111 |
+
kernel_size,
|
| 112 |
+
groups=channels,
|
| 113 |
+
dilation=dilation,
|
| 114 |
+
padding=padding,
|
| 115 |
+
)
|
| 116 |
+
)
|
| 117 |
+
self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
|
| 118 |
+
self.norms_1.append(LayerNorm(channels))
|
| 119 |
+
self.norms_2.append(LayerNorm(channels))
|
| 120 |
+
|
| 121 |
+
def forward(self, x, x_mask, g=None):
|
| 122 |
+
if g is not None:
|
| 123 |
+
x = x + g
|
| 124 |
+
for i in range(self.n_layers):
|
| 125 |
+
y = self.convs_sep[i](x * x_mask)
|
| 126 |
+
y = self.norms_1[i](y)
|
| 127 |
+
y = F.gelu(y)
|
| 128 |
+
y = self.convs_1x1[i](y)
|
| 129 |
+
y = self.norms_2[i](y)
|
| 130 |
+
y = F.gelu(y)
|
| 131 |
+
y = self.drop(y)
|
| 132 |
+
x = x + y
|
| 133 |
+
return x * x_mask
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
class WN(torch.nn.Module):
|
| 137 |
+
def __init__(
|
| 138 |
+
self,
|
| 139 |
+
hidden_channels,
|
| 140 |
+
kernel_size,
|
| 141 |
+
dilation_rate,
|
| 142 |
+
n_layers,
|
| 143 |
+
gin_channels=0,
|
| 144 |
+
p_dropout=0,
|
| 145 |
+
):
|
| 146 |
+
super(WN, self).__init__()
|
| 147 |
+
assert kernel_size % 2 == 1
|
| 148 |
+
self.hidden_channels = hidden_channels
|
| 149 |
+
self.kernel_size = (kernel_size,)
|
| 150 |
+
self.dilation_rate = dilation_rate
|
| 151 |
+
self.n_layers = n_layers
|
| 152 |
+
self.gin_channels = gin_channels
|
| 153 |
+
self.p_dropout = p_dropout
|
| 154 |
+
|
| 155 |
+
self.in_layers = torch.nn.ModuleList()
|
| 156 |
+
self.res_skip_layers = torch.nn.ModuleList()
|
| 157 |
+
self.drop = nn.Dropout(p_dropout)
|
| 158 |
+
|
| 159 |
+
if gin_channels != 0:
|
| 160 |
+
cond_layer = torch.nn.Conv1d(
|
| 161 |
+
gin_channels, 2 * hidden_channels * n_layers, 1
|
| 162 |
+
)
|
| 163 |
+
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight")
|
| 164 |
+
|
| 165 |
+
for i in range(n_layers):
|
| 166 |
+
dilation = dilation_rate**i
|
| 167 |
+
padding = int((kernel_size * dilation - dilation) / 2)
|
| 168 |
+
in_layer = torch.nn.Conv1d(
|
| 169 |
+
hidden_channels,
|
| 170 |
+
2 * hidden_channels,
|
| 171 |
+
kernel_size,
|
| 172 |
+
dilation=dilation,
|
| 173 |
+
padding=padding,
|
| 174 |
+
)
|
| 175 |
+
in_layer = torch.nn.utils.weight_norm(in_layer, name="weight")
|
| 176 |
+
self.in_layers.append(in_layer)
|
| 177 |
+
|
| 178 |
+
# last one is not necessary
|
| 179 |
+
if i < n_layers - 1:
|
| 180 |
+
res_skip_channels = 2 * hidden_channels
|
| 181 |
+
else:
|
| 182 |
+
res_skip_channels = hidden_channels
|
| 183 |
+
|
| 184 |
+
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
|
| 185 |
+
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name="weight")
|
| 186 |
+
self.res_skip_layers.append(res_skip_layer)
|
| 187 |
+
|
| 188 |
+
def forward(self, x, x_mask, g=None, **kwargs):
|
| 189 |
+
output = torch.zeros_like(x)
|
| 190 |
+
n_channels_tensor = torch.IntTensor([self.hidden_channels])
|
| 191 |
+
|
| 192 |
+
if g is not None:
|
| 193 |
+
g = self.cond_layer(g)
|
| 194 |
+
|
| 195 |
+
for i in range(self.n_layers):
|
| 196 |
+
x_in = self.in_layers[i](x)
|
| 197 |
+
if g is not None:
|
| 198 |
+
cond_offset = i * 2 * self.hidden_channels
|
| 199 |
+
g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :]
|
| 200 |
+
else:
|
| 201 |
+
g_l = torch.zeros_like(x_in)
|
| 202 |
+
|
| 203 |
+
acts = commons.fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor)
|
| 204 |
+
acts = self.drop(acts)
|
| 205 |
+
|
| 206 |
+
res_skip_acts = self.res_skip_layers[i](acts)
|
| 207 |
+
if i < self.n_layers - 1:
|
| 208 |
+
res_acts = res_skip_acts[:, : self.hidden_channels, :]
|
| 209 |
+
x = (x + res_acts) * x_mask
|
| 210 |
+
output = output + res_skip_acts[:, self.hidden_channels :, :]
|
| 211 |
+
else:
|
| 212 |
+
output = output + res_skip_acts
|
| 213 |
+
return output * x_mask
|
| 214 |
+
|
| 215 |
+
def remove_weight_norm(self):
|
| 216 |
+
if self.gin_channels != 0:
|
| 217 |
+
torch.nn.utils.remove_weight_norm(self.cond_layer)
|
| 218 |
+
for l in self.in_layers:
|
| 219 |
+
torch.nn.utils.remove_weight_norm(l)
|
| 220 |
+
for l in self.res_skip_layers:
|
| 221 |
+
torch.nn.utils.remove_weight_norm(l)
|
| 222 |
+
|
| 223 |
+
|
| 224 |
+
class ResBlock1(torch.nn.Module):
|
| 225 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
|
| 226 |
+
super(ResBlock1, self).__init__()
|
| 227 |
+
self.convs1 = nn.ModuleList(
|
| 228 |
+
[
|
| 229 |
+
weight_norm(
|
| 230 |
+
Conv1d(
|
| 231 |
+
channels,
|
| 232 |
+
channels,
|
| 233 |
+
kernel_size,
|
| 234 |
+
1,
|
| 235 |
+
dilation=dilation[0],
|
| 236 |
+
padding=get_padding(kernel_size, dilation[0]),
|
| 237 |
+
)
|
| 238 |
+
),
|
| 239 |
+
weight_norm(
|
| 240 |
+
Conv1d(
|
| 241 |
+
channels,
|
| 242 |
+
channels,
|
| 243 |
+
kernel_size,
|
| 244 |
+
1,
|
| 245 |
+
dilation=dilation[1],
|
| 246 |
+
padding=get_padding(kernel_size, dilation[1]),
|
| 247 |
+
)
|
| 248 |
+
),
|
| 249 |
+
weight_norm(
|
| 250 |
+
Conv1d(
|
| 251 |
+
channels,
|
| 252 |
+
channels,
|
| 253 |
+
kernel_size,
|
| 254 |
+
1,
|
| 255 |
+
dilation=dilation[2],
|
| 256 |
+
padding=get_padding(kernel_size, dilation[2]),
|
| 257 |
+
)
|
| 258 |
+
),
|
| 259 |
+
]
|
| 260 |
+
)
|
| 261 |
+
self.convs1.apply(init_weights)
|
| 262 |
+
|
| 263 |
+
self.convs2 = nn.ModuleList(
|
| 264 |
+
[
|
| 265 |
+
weight_norm(
|
| 266 |
+
Conv1d(
|
| 267 |
+
channels,
|
| 268 |
+
channels,
|
| 269 |
+
kernel_size,
|
| 270 |
+
1,
|
| 271 |
+
dilation=1,
|
| 272 |
+
padding=get_padding(kernel_size, 1),
|
| 273 |
+
)
|
| 274 |
+
),
|
| 275 |
+
weight_norm(
|
| 276 |
+
Conv1d(
|
| 277 |
+
channels,
|
| 278 |
+
channels,
|
| 279 |
+
kernel_size,
|
| 280 |
+
1,
|
| 281 |
+
dilation=1,
|
| 282 |
+
padding=get_padding(kernel_size, 1),
|
| 283 |
+
)
|
| 284 |
+
),
|
| 285 |
+
weight_norm(
|
| 286 |
+
Conv1d(
|
| 287 |
+
channels,
|
| 288 |
+
channels,
|
| 289 |
+
kernel_size,
|
| 290 |
+
1,
|
| 291 |
+
dilation=1,
|
| 292 |
+
padding=get_padding(kernel_size, 1),
|
| 293 |
+
)
|
| 294 |
+
),
|
| 295 |
+
]
|
| 296 |
+
)
|
| 297 |
+
self.convs2.apply(init_weights)
|
| 298 |
+
|
| 299 |
+
def forward(self, x, x_mask=None):
|
| 300 |
+
for c1, c2 in zip(self.convs1, self.convs2):
|
| 301 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
| 302 |
+
if x_mask is not None:
|
| 303 |
+
xt = xt * x_mask
|
| 304 |
+
xt = c1(xt)
|
| 305 |
+
xt = F.leaky_relu(xt, LRELU_SLOPE)
|
| 306 |
+
if x_mask is not None:
|
| 307 |
+
xt = xt * x_mask
|
| 308 |
+
xt = c2(xt)
|
| 309 |
+
x = xt + x
|
| 310 |
+
if x_mask is not None:
|
| 311 |
+
x = x * x_mask
|
| 312 |
+
return x
|
| 313 |
+
|
| 314 |
+
def remove_weight_norm(self):
|
| 315 |
+
for l in self.convs1:
|
| 316 |
+
remove_weight_norm(l)
|
| 317 |
+
for l in self.convs2:
|
| 318 |
+
remove_weight_norm(l)
|
| 319 |
+
|
| 320 |
+
|
| 321 |
+
class ResBlock2(torch.nn.Module):
|
| 322 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
|
| 323 |
+
super(ResBlock2, self).__init__()
|
| 324 |
+
self.convs = nn.ModuleList(
|
| 325 |
+
[
|
| 326 |
+
weight_norm(
|
| 327 |
+
Conv1d(
|
| 328 |
+
channels,
|
| 329 |
+
channels,
|
| 330 |
+
kernel_size,
|
| 331 |
+
1,
|
| 332 |
+
dilation=dilation[0],
|
| 333 |
+
padding=get_padding(kernel_size, dilation[0]),
|
| 334 |
+
)
|
| 335 |
+
),
|
| 336 |
+
weight_norm(
|
| 337 |
+
Conv1d(
|
| 338 |
+
channels,
|
| 339 |
+
channels,
|
| 340 |
+
kernel_size,
|
| 341 |
+
1,
|
| 342 |
+
dilation=dilation[1],
|
| 343 |
+
padding=get_padding(kernel_size, dilation[1]),
|
| 344 |
+
)
|
| 345 |
+
),
|
| 346 |
+
]
|
| 347 |
+
)
|
| 348 |
+
self.convs.apply(init_weights)
|
| 349 |
+
|
| 350 |
+
def forward(self, x, x_mask=None):
|
| 351 |
+
for c in self.convs:
|
| 352 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
| 353 |
+
if x_mask is not None:
|
| 354 |
+
xt = xt * x_mask
|
| 355 |
+
xt = c(xt)
|
| 356 |
+
x = xt + x
|
| 357 |
+
if x_mask is not None:
|
| 358 |
+
x = x * x_mask
|
| 359 |
+
return x
|
| 360 |
+
|
| 361 |
+
def remove_weight_norm(self):
|
| 362 |
+
for l in self.convs:
|
| 363 |
+
remove_weight_norm(l)
|
| 364 |
+
|
| 365 |
+
|
| 366 |
+
class Log(nn.Module):
|
| 367 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
| 368 |
+
if not reverse:
|
| 369 |
+
y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
|
| 370 |
+
logdet = torch.sum(-y, [1, 2])
|
| 371 |
+
return y, logdet
|
| 372 |
+
else:
|
| 373 |
+
x = torch.exp(x) * x_mask
|
| 374 |
+
return x
|
| 375 |
+
|
| 376 |
+
|
| 377 |
+
class Flip(nn.Module):
|
| 378 |
+
def forward(self, x, *args, reverse=False, **kwargs):
|
| 379 |
+
x = torch.flip(x, [1])
|
| 380 |
+
if not reverse:
|
| 381 |
+
logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
|
| 382 |
+
return x, logdet
|
| 383 |
+
else:
|
| 384 |
+
return x
|
| 385 |
+
|
| 386 |
+
|
| 387 |
+
class ElementwiseAffine(nn.Module):
|
| 388 |
+
def __init__(self, channels):
|
| 389 |
+
super().__init__()
|
| 390 |
+
self.channels = channels
|
| 391 |
+
self.m = nn.Parameter(torch.zeros(channels, 1))
|
| 392 |
+
self.logs = nn.Parameter(torch.zeros(channels, 1))
|
| 393 |
+
|
| 394 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
| 395 |
+
if not reverse:
|
| 396 |
+
y = self.m + torch.exp(self.logs) * x
|
| 397 |
+
y = y * x_mask
|
| 398 |
+
logdet = torch.sum(self.logs * x_mask, [1, 2])
|
| 399 |
+
return y, logdet
|
| 400 |
+
else:
|
| 401 |
+
x = (x - self.m) * torch.exp(-self.logs) * x_mask
|
| 402 |
+
return x
|
| 403 |
+
|
| 404 |
+
|
| 405 |
+
class ResidualCouplingLayer(nn.Module):
|
| 406 |
+
def __init__(
|
| 407 |
+
self,
|
| 408 |
+
channels,
|
| 409 |
+
hidden_channels,
|
| 410 |
+
kernel_size,
|
| 411 |
+
dilation_rate,
|
| 412 |
+
n_layers,
|
| 413 |
+
p_dropout=0,
|
| 414 |
+
gin_channels=0,
|
| 415 |
+
mean_only=False,
|
| 416 |
+
):
|
| 417 |
+
assert channels % 2 == 0, "channels should be divisible by 2"
|
| 418 |
+
super().__init__()
|
| 419 |
+
self.channels = channels
|
| 420 |
+
self.hidden_channels = hidden_channels
|
| 421 |
+
self.kernel_size = kernel_size
|
| 422 |
+
self.dilation_rate = dilation_rate
|
| 423 |
+
self.n_layers = n_layers
|
| 424 |
+
self.half_channels = channels // 2
|
| 425 |
+
self.mean_only = mean_only
|
| 426 |
+
|
| 427 |
+
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
| 428 |
+
self.enc = WN(
|
| 429 |
+
hidden_channels,
|
| 430 |
+
kernel_size,
|
| 431 |
+
dilation_rate,
|
| 432 |
+
n_layers,
|
| 433 |
+
p_dropout=p_dropout,
|
| 434 |
+
gin_channels=gin_channels,
|
| 435 |
+
)
|
| 436 |
+
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
|
| 437 |
+
self.post.weight.data.zero_()
|
| 438 |
+
self.post.bias.data.zero_()
|
| 439 |
+
|
| 440 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
| 441 |
+
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
| 442 |
+
h = self.pre(x0) * x_mask
|
| 443 |
+
h = self.enc(h, x_mask, g=g)
|
| 444 |
+
stats = self.post(h) * x_mask
|
| 445 |
+
if not self.mean_only:
|
| 446 |
+
m, logs = torch.split(stats, [self.half_channels] * 2, 1)
|
| 447 |
+
else:
|
| 448 |
+
m = stats
|
| 449 |
+
logs = torch.zeros_like(m)
|
| 450 |
+
|
| 451 |
+
if not reverse:
|
| 452 |
+
x1 = m + x1 * torch.exp(logs) * x_mask
|
| 453 |
+
x = torch.cat([x0, x1], 1)
|
| 454 |
+
logdet = torch.sum(logs, [1, 2])
|
| 455 |
+
return x, logdet
|
| 456 |
+
else:
|
| 457 |
+
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
| 458 |
+
x = torch.cat([x0, x1], 1)
|
| 459 |
+
return x
|
| 460 |
+
|
| 461 |
+
def remove_weight_norm(self):
|
| 462 |
+
self.enc.remove_weight_norm()
|
| 463 |
+
|
| 464 |
+
|
| 465 |
+
class ConvFlow(nn.Module):
|
| 466 |
+
def __init__(
|
| 467 |
+
self,
|
| 468 |
+
in_channels,
|
| 469 |
+
filter_channels,
|
| 470 |
+
kernel_size,
|
| 471 |
+
n_layers,
|
| 472 |
+
num_bins=10,
|
| 473 |
+
tail_bound=5.0,
|
| 474 |
+
):
|
| 475 |
+
super().__init__()
|
| 476 |
+
self.in_channels = in_channels
|
| 477 |
+
self.filter_channels = filter_channels
|
| 478 |
+
self.kernel_size = kernel_size
|
| 479 |
+
self.n_layers = n_layers
|
| 480 |
+
self.num_bins = num_bins
|
| 481 |
+
self.tail_bound = tail_bound
|
| 482 |
+
self.half_channels = in_channels // 2
|
| 483 |
+
|
| 484 |
+
self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
|
| 485 |
+
self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.0)
|
| 486 |
+
self.proj = nn.Conv1d(
|
| 487 |
+
filter_channels, self.half_channels * (num_bins * 3 - 1), 1
|
| 488 |
+
)
|
| 489 |
+
self.proj.weight.data.zero_()
|
| 490 |
+
self.proj.bias.data.zero_()
|
| 491 |
+
|
| 492 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
| 493 |
+
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
| 494 |
+
h = self.pre(x0)
|
| 495 |
+
h = self.convs(h, x_mask, g=g)
|
| 496 |
+
h = self.proj(h) * x_mask
|
| 497 |
+
|
| 498 |
+
b, c, t = x0.shape
|
| 499 |
+
h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
|
| 500 |
+
|
| 501 |
+
unnormalized_widths = h[..., : self.num_bins] / math.sqrt(self.filter_channels)
|
| 502 |
+
unnormalized_heights = h[..., self.num_bins : 2 * self.num_bins] / math.sqrt(
|
| 503 |
+
self.filter_channels
|
| 504 |
+
)
|
| 505 |
+
unnormalized_derivatives = h[..., 2 * self.num_bins :]
|
| 506 |
+
|
| 507 |
+
x1, logabsdet = piecewise_rational_quadratic_transform(
|
| 508 |
+
x1,
|
| 509 |
+
unnormalized_widths,
|
| 510 |
+
unnormalized_heights,
|
| 511 |
+
unnormalized_derivatives,
|
| 512 |
+
inverse=reverse,
|
| 513 |
+
tails="linear",
|
| 514 |
+
tail_bound=self.tail_bound,
|
| 515 |
+
)
|
| 516 |
+
|
| 517 |
+
x = torch.cat([x0, x1], 1) * x_mask
|
| 518 |
+
logdet = torch.sum(logabsdet * x_mask, [1, 2])
|
| 519 |
+
if not reverse:
|
| 520 |
+
return x, logdet
|
| 521 |
+
else:
|
| 522 |
+
return x
|
infer_pack/modules/F0Predictor/DioF0Predictor.py
ADDED
|
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from infer_pack.modules.F0Predictor.F0Predictor import F0Predictor
|
| 2 |
+
import pyworld
|
| 3 |
+
import numpy as np
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class DioF0Predictor(F0Predictor):
|
| 7 |
+
def __init__(self, hop_length=512, f0_min=50, f0_max=1100, sampling_rate=44100):
|
| 8 |
+
self.hop_length = hop_length
|
| 9 |
+
self.f0_min = f0_min
|
| 10 |
+
self.f0_max = f0_max
|
| 11 |
+
self.sampling_rate = sampling_rate
|
| 12 |
+
|
| 13 |
+
def interpolate_f0(self, f0):
|
| 14 |
+
"""
|
| 15 |
+
对F0进行插值处理
|
| 16 |
+
"""
|
| 17 |
+
|
| 18 |
+
data = np.reshape(f0, (f0.size, 1))
|
| 19 |
+
|
| 20 |
+
vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
|
| 21 |
+
vuv_vector[data > 0.0] = 1.0
|
| 22 |
+
vuv_vector[data <= 0.0] = 0.0
|
| 23 |
+
|
| 24 |
+
ip_data = data
|
| 25 |
+
|
| 26 |
+
frame_number = data.size
|
| 27 |
+
last_value = 0.0
|
| 28 |
+
for i in range(frame_number):
|
| 29 |
+
if data[i] <= 0.0:
|
| 30 |
+
j = i + 1
|
| 31 |
+
for j in range(i + 1, frame_number):
|
| 32 |
+
if data[j] > 0.0:
|
| 33 |
+
break
|
| 34 |
+
if j < frame_number - 1:
|
| 35 |
+
if last_value > 0.0:
|
| 36 |
+
step = (data[j] - data[i - 1]) / float(j - i)
|
| 37 |
+
for k in range(i, j):
|
| 38 |
+
ip_data[k] = data[i - 1] + step * (k - i + 1)
|
| 39 |
+
else:
|
| 40 |
+
for k in range(i, j):
|
| 41 |
+
ip_data[k] = data[j]
|
| 42 |
+
else:
|
| 43 |
+
for k in range(i, frame_number):
|
| 44 |
+
ip_data[k] = last_value
|
| 45 |
+
else:
|
| 46 |
+
ip_data[i] = data[i] # 这里可能存在一个没有必要的拷贝
|
| 47 |
+
last_value = data[i]
|
| 48 |
+
|
| 49 |
+
return ip_data[:, 0], vuv_vector[:, 0]
|
| 50 |
+
|
| 51 |
+
def resize_f0(self, x, target_len):
|
| 52 |
+
source = np.array(x)
|
| 53 |
+
source[source < 0.001] = np.nan
|
| 54 |
+
target = np.interp(
|
| 55 |
+
np.arange(0, len(source) * target_len, len(source)) / target_len,
|
| 56 |
+
np.arange(0, len(source)),
|
| 57 |
+
source,
|
| 58 |
+
)
|
| 59 |
+
res = np.nan_to_num(target)
|
| 60 |
+
return res
|
| 61 |
+
|
| 62 |
+
def compute_f0(self, wav, p_len=None):
|
| 63 |
+
if p_len is None:
|
| 64 |
+
p_len = wav.shape[0] // self.hop_length
|
| 65 |
+
f0, t = pyworld.dio(
|
| 66 |
+
wav.astype(np.double),
|
| 67 |
+
fs=self.sampling_rate,
|
| 68 |
+
f0_floor=self.f0_min,
|
| 69 |
+
f0_ceil=self.f0_max,
|
| 70 |
+
frame_period=1000 * self.hop_length / self.sampling_rate,
|
| 71 |
+
)
|
| 72 |
+
f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.sampling_rate)
|
| 73 |
+
for index, pitch in enumerate(f0):
|
| 74 |
+
f0[index] = round(pitch, 1)
|
| 75 |
+
return self.interpolate_f0(self.resize_f0(f0, p_len))[0]
|
| 76 |
+
|
| 77 |
+
def compute_f0_uv(self, wav, p_len=None):
|
| 78 |
+
if p_len is None:
|
| 79 |
+
p_len = wav.shape[0] // self.hop_length
|
| 80 |
+
f0, t = pyworld.dio(
|
| 81 |
+
wav.astype(np.double),
|
| 82 |
+
fs=self.sampling_rate,
|
| 83 |
+
f0_floor=self.f0_min,
|
| 84 |
+
f0_ceil=self.f0_max,
|
| 85 |
+
frame_period=1000 * self.hop_length / self.sampling_rate,
|
| 86 |
+
)
|
| 87 |
+
f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.sampling_rate)
|
| 88 |
+
for index, pitch in enumerate(f0):
|
| 89 |
+
f0[index] = round(pitch, 1)
|
| 90 |
+
return self.interpolate_f0(self.resize_f0(f0, p_len))
|
infer_pack/modules/F0Predictor/F0Predictor.py
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
class F0Predictor(object):
|
| 2 |
+
def compute_f0(self, wav, p_len):
|
| 3 |
+
"""
|
| 4 |
+
input: wav:[signal_length]
|
| 5 |
+
p_len:int
|
| 6 |
+
output: f0:[signal_length//hop_length]
|
| 7 |
+
"""
|
| 8 |
+
pass
|
| 9 |
+
|
| 10 |
+
def compute_f0_uv(self, wav, p_len):
|
| 11 |
+
"""
|
| 12 |
+
input: wav:[signal_length]
|
| 13 |
+
p_len:int
|
| 14 |
+
output: f0:[signal_length//hop_length],uv:[signal_length//hop_length]
|
| 15 |
+
"""
|
| 16 |
+
pass
|
infer_pack/modules/F0Predictor/HarvestF0Predictor.py
ADDED
|
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from infer_pack.modules.F0Predictor.F0Predictor import F0Predictor
|
| 2 |
+
import pyworld
|
| 3 |
+
import numpy as np
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class HarvestF0Predictor(F0Predictor):
|
| 7 |
+
def __init__(self, hop_length=512, f0_min=50, f0_max=1100, sampling_rate=44100):
|
| 8 |
+
self.hop_length = hop_length
|
| 9 |
+
self.f0_min = f0_min
|
| 10 |
+
self.f0_max = f0_max
|
| 11 |
+
self.sampling_rate = sampling_rate
|
| 12 |
+
|
| 13 |
+
def interpolate_f0(self, f0):
|
| 14 |
+
"""
|
| 15 |
+
对F0进行插值处理
|
| 16 |
+
"""
|
| 17 |
+
|
| 18 |
+
data = np.reshape(f0, (f0.size, 1))
|
| 19 |
+
|
| 20 |
+
vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
|
| 21 |
+
vuv_vector[data > 0.0] = 1.0
|
| 22 |
+
vuv_vector[data <= 0.0] = 0.0
|
| 23 |
+
|
| 24 |
+
ip_data = data
|
| 25 |
+
|
| 26 |
+
frame_number = data.size
|
| 27 |
+
last_value = 0.0
|
| 28 |
+
for i in range(frame_number):
|
| 29 |
+
if data[i] <= 0.0:
|
| 30 |
+
j = i + 1
|
| 31 |
+
for j in range(i + 1, frame_number):
|
| 32 |
+
if data[j] > 0.0:
|
| 33 |
+
break
|
| 34 |
+
if j < frame_number - 1:
|
| 35 |
+
if last_value > 0.0:
|
| 36 |
+
step = (data[j] - data[i - 1]) / float(j - i)
|
| 37 |
+
for k in range(i, j):
|
| 38 |
+
ip_data[k] = data[i - 1] + step * (k - i + 1)
|
| 39 |
+
else:
|
| 40 |
+
for k in range(i, j):
|
| 41 |
+
ip_data[k] = data[j]
|
| 42 |
+
else:
|
| 43 |
+
for k in range(i, frame_number):
|
| 44 |
+
ip_data[k] = last_value
|
| 45 |
+
else:
|
| 46 |
+
ip_data[i] = data[i] # 这里可能存在一个没有必要的拷贝
|
| 47 |
+
last_value = data[i]
|
| 48 |
+
|
| 49 |
+
return ip_data[:, 0], vuv_vector[:, 0]
|
| 50 |
+
|
| 51 |
+
def resize_f0(self, x, target_len):
|
| 52 |
+
source = np.array(x)
|
| 53 |
+
source[source < 0.001] = np.nan
|
| 54 |
+
target = np.interp(
|
| 55 |
+
np.arange(0, len(source) * target_len, len(source)) / target_len,
|
| 56 |
+
np.arange(0, len(source)),
|
| 57 |
+
source,
|
| 58 |
+
)
|
| 59 |
+
res = np.nan_to_num(target)
|
| 60 |
+
return res
|
| 61 |
+
|
| 62 |
+
def compute_f0(self, wav, p_len=None):
|
| 63 |
+
if p_len is None:
|
| 64 |
+
p_len = wav.shape[0] // self.hop_length
|
| 65 |
+
f0, t = pyworld.harvest(
|
| 66 |
+
wav.astype(np.double),
|
| 67 |
+
fs=self.hop_length,
|
| 68 |
+
f0_ceil=self.f0_max,
|
| 69 |
+
f0_floor=self.f0_min,
|
| 70 |
+
frame_period=1000 * self.hop_length / self.sampling_rate,
|
| 71 |
+
)
|
| 72 |
+
f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.fs)
|
| 73 |
+
return self.interpolate_f0(self.resize_f0(f0, p_len))[0]
|
| 74 |
+
|
| 75 |
+
def compute_f0_uv(self, wav, p_len=None):
|
| 76 |
+
if p_len is None:
|
| 77 |
+
p_len = wav.shape[0] // self.hop_length
|
| 78 |
+
f0, t = pyworld.harvest(
|
| 79 |
+
wav.astype(np.double),
|
| 80 |
+
fs=self.sampling_rate,
|
| 81 |
+
f0_floor=self.f0_min,
|
| 82 |
+
f0_ceil=self.f0_max,
|
| 83 |
+
frame_period=1000 * self.hop_length / self.sampling_rate,
|
| 84 |
+
)
|
| 85 |
+
f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.sampling_rate)
|
| 86 |
+
return self.interpolate_f0(self.resize_f0(f0, p_len))
|
infer_pack/modules/F0Predictor/PMF0Predictor.py
ADDED
|
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from infer_pack.modules.F0Predictor.F0Predictor import F0Predictor
|
| 2 |
+
import parselmouth
|
| 3 |
+
import numpy as np
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class PMF0Predictor(F0Predictor):
|
| 7 |
+
def __init__(self, hop_length=512, f0_min=50, f0_max=1100, sampling_rate=44100):
|
| 8 |
+
self.hop_length = hop_length
|
| 9 |
+
self.f0_min = f0_min
|
| 10 |
+
self.f0_max = f0_max
|
| 11 |
+
self.sampling_rate = sampling_rate
|
| 12 |
+
|
| 13 |
+
def interpolate_f0(self, f0):
|
| 14 |
+
"""
|
| 15 |
+
对F0进行插值处理
|
| 16 |
+
"""
|
| 17 |
+
|
| 18 |
+
data = np.reshape(f0, (f0.size, 1))
|
| 19 |
+
|
| 20 |
+
vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
|
| 21 |
+
vuv_vector[data > 0.0] = 1.0
|
| 22 |
+
vuv_vector[data <= 0.0] = 0.0
|
| 23 |
+
|
| 24 |
+
ip_data = data
|
| 25 |
+
|
| 26 |
+
frame_number = data.size
|
| 27 |
+
last_value = 0.0
|
| 28 |
+
for i in range(frame_number):
|
| 29 |
+
if data[i] <= 0.0:
|
| 30 |
+
j = i + 1
|
| 31 |
+
for j in range(i + 1, frame_number):
|
| 32 |
+
if data[j] > 0.0:
|
| 33 |
+
break
|
| 34 |
+
if j < frame_number - 1:
|
| 35 |
+
if last_value > 0.0:
|
| 36 |
+
step = (data[j] - data[i - 1]) / float(j - i)
|
| 37 |
+
for k in range(i, j):
|
| 38 |
+
ip_data[k] = data[i - 1] + step * (k - i + 1)
|
| 39 |
+
else:
|
| 40 |
+
for k in range(i, j):
|
| 41 |
+
ip_data[k] = data[j]
|
| 42 |
+
else:
|
| 43 |
+
for k in range(i, frame_number):
|
| 44 |
+
ip_data[k] = last_value
|
| 45 |
+
else:
|
| 46 |
+
ip_data[i] = data[i] # 这里可能存在一个没有必要的拷贝
|
| 47 |
+
last_value = data[i]
|
| 48 |
+
|
| 49 |
+
return ip_data[:, 0], vuv_vector[:, 0]
|
| 50 |
+
|
| 51 |
+
def compute_f0(self, wav, p_len=None):
|
| 52 |
+
x = wav
|
| 53 |
+
if p_len is None:
|
| 54 |
+
p_len = x.shape[0] // self.hop_length
|
| 55 |
+
else:
|
| 56 |
+
assert abs(p_len - x.shape[0] // self.hop_length) < 4, "pad length error"
|
| 57 |
+
time_step = self.hop_length / self.sampling_rate * 1000
|
| 58 |
+
f0 = (
|
| 59 |
+
parselmouth.Sound(x, self.sampling_rate)
|
| 60 |
+
.to_pitch_ac(
|
| 61 |
+
time_step=time_step / 1000,
|
| 62 |
+
voicing_threshold=0.6,
|
| 63 |
+
pitch_floor=self.f0_min,
|
| 64 |
+
pitch_ceiling=self.f0_max,
|
| 65 |
+
)
|
| 66 |
+
.selected_array["frequency"]
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
pad_size = (p_len - len(f0) + 1) // 2
|
| 70 |
+
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
|
| 71 |
+
f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant")
|
| 72 |
+
f0, uv = self.interpolate_f0(f0)
|
| 73 |
+
return f0
|
| 74 |
+
|
| 75 |
+
def compute_f0_uv(self, wav, p_len=None):
|
| 76 |
+
x = wav
|
| 77 |
+
if p_len is None:
|
| 78 |
+
p_len = x.shape[0] // self.hop_length
|
| 79 |
+
else:
|
| 80 |
+
assert abs(p_len - x.shape[0] // self.hop_length) < 4, "pad length error"
|
| 81 |
+
time_step = self.hop_length / self.sampling_rate * 1000
|
| 82 |
+
f0 = (
|
| 83 |
+
parselmouth.Sound(x, self.sampling_rate)
|
| 84 |
+
.to_pitch_ac(
|
| 85 |
+
time_step=time_step / 1000,
|
| 86 |
+
voicing_threshold=0.6,
|
| 87 |
+
pitch_floor=self.f0_min,
|
| 88 |
+
pitch_ceiling=self.f0_max,
|
| 89 |
+
)
|
| 90 |
+
.selected_array["frequency"]
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
pad_size = (p_len - len(f0) + 1) // 2
|
| 94 |
+
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
|
| 95 |
+
f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant")
|
| 96 |
+
f0, uv = self.interpolate_f0(f0)
|
| 97 |
+
return f0, uv
|
infer_pack/modules/F0Predictor/__init__.py
ADDED
|
File without changes
|
infer_pack/onnx_inference.py
ADDED
|
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import onnxruntime
|
| 2 |
+
import librosa
|
| 3 |
+
import numpy as np
|
| 4 |
+
import soundfile
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class ContentVec:
|
| 8 |
+
def __init__(self, vec_path="pretrained/vec-768-layer-12.onnx", device=None):
|
| 9 |
+
print("load model(s) from {}".format(vec_path))
|
| 10 |
+
if device == "cpu" or device is None:
|
| 11 |
+
providers = ["CPUExecutionProvider"]
|
| 12 |
+
elif device == "cuda":
|
| 13 |
+
providers = ["CUDAExecutionProvider", "CPUExecutionProvider"]
|
| 14 |
+
else:
|
| 15 |
+
raise RuntimeError("Unsportted Device")
|
| 16 |
+
self.model = onnxruntime.InferenceSession(vec_path, providers=providers)
|
| 17 |
+
|
| 18 |
+
def __call__(self, wav):
|
| 19 |
+
return self.forward(wav)
|
| 20 |
+
|
| 21 |
+
def forward(self, wav):
|
| 22 |
+
feats = wav
|
| 23 |
+
if feats.ndim == 2: # double channels
|
| 24 |
+
feats = feats.mean(-1)
|
| 25 |
+
assert feats.ndim == 1, feats.ndim
|
| 26 |
+
feats = np.expand_dims(np.expand_dims(feats, 0), 0)
|
| 27 |
+
onnx_input = {self.model.get_inputs()[0].name: feats}
|
| 28 |
+
logits = self.model.run(None, onnx_input)[0]
|
| 29 |
+
return logits.transpose(0, 2, 1)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def get_f0_predictor(f0_predictor, hop_length, sampling_rate, **kargs):
|
| 33 |
+
if f0_predictor == "pm":
|
| 34 |
+
from infer_pack.modules.F0Predictor.PMF0Predictor import PMF0Predictor
|
| 35 |
+
|
| 36 |
+
f0_predictor_object = PMF0Predictor(
|
| 37 |
+
hop_length=hop_length, sampling_rate=sampling_rate
|
| 38 |
+
)
|
| 39 |
+
elif f0_predictor == "harvest":
|
| 40 |
+
from infer_pack.modules.F0Predictor.HarvestF0Predictor import HarvestF0Predictor
|
| 41 |
+
|
| 42 |
+
f0_predictor_object = HarvestF0Predictor(
|
| 43 |
+
hop_length=hop_length, sampling_rate=sampling_rate
|
| 44 |
+
)
|
| 45 |
+
elif f0_predictor == "dio":
|
| 46 |
+
from infer_pack.modules.F0Predictor.DioF0Predictor import DioF0Predictor
|
| 47 |
+
|
| 48 |
+
f0_predictor_object = DioF0Predictor(
|
| 49 |
+
hop_length=hop_length, sampling_rate=sampling_rate
|
| 50 |
+
)
|
| 51 |
+
else:
|
| 52 |
+
raise Exception("Unknown f0 predictor")
|
| 53 |
+
return f0_predictor_object
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
class OnnxRVC:
|
| 57 |
+
def __init__(
|
| 58 |
+
self,
|
| 59 |
+
model_path,
|
| 60 |
+
sr=40000,
|
| 61 |
+
hop_size=512,
|
| 62 |
+
vec_path="vec-768-layer-12",
|
| 63 |
+
device="cpu",
|
| 64 |
+
):
|
| 65 |
+
vec_path = f"pretrained/{vec_path}.onnx"
|
| 66 |
+
self.vec_model = ContentVec(vec_path, device)
|
| 67 |
+
if device == "cpu" or device is None:
|
| 68 |
+
providers = ["CPUExecutionProvider"]
|
| 69 |
+
elif device == "cuda":
|
| 70 |
+
providers = ["CUDAExecutionProvider", "CPUExecutionProvider"]
|
| 71 |
+
else:
|
| 72 |
+
raise RuntimeError("Unsportted Device")
|
| 73 |
+
self.model = onnxruntime.InferenceSession(model_path, providers=providers)
|
| 74 |
+
self.sampling_rate = sr
|
| 75 |
+
self.hop_size = hop_size
|
| 76 |
+
|
| 77 |
+
def forward(self, hubert, hubert_length, pitch, pitchf, ds, rnd):
|
| 78 |
+
onnx_input = {
|
| 79 |
+
self.model.get_inputs()[0].name: hubert,
|
| 80 |
+
self.model.get_inputs()[1].name: hubert_length,
|
| 81 |
+
self.model.get_inputs()[2].name: pitch,
|
| 82 |
+
self.model.get_inputs()[3].name: pitchf,
|
| 83 |
+
self.model.get_inputs()[4].name: ds,
|
| 84 |
+
self.model.get_inputs()[5].name: rnd,
|
| 85 |
+
}
|
| 86 |
+
return (self.model.run(None, onnx_input)[0] * 32767).astype(np.int16)
|
| 87 |
+
|
| 88 |
+
def inference(
|
| 89 |
+
self,
|
| 90 |
+
raw_path,
|
| 91 |
+
sid,
|
| 92 |
+
f0_method="dio",
|
| 93 |
+
f0_up_key=0,
|
| 94 |
+
pad_time=0.5,
|
| 95 |
+
cr_threshold=0.02,
|
| 96 |
+
):
|
| 97 |
+
f0_min = 50
|
| 98 |
+
f0_max = 1100
|
| 99 |
+
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
| 100 |
+
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
| 101 |
+
f0_predictor = get_f0_predictor(
|
| 102 |
+
f0_method,
|
| 103 |
+
hop_length=self.hop_size,
|
| 104 |
+
sampling_rate=self.sampling_rate,
|
| 105 |
+
threshold=cr_threshold,
|
| 106 |
+
)
|
| 107 |
+
wav, sr = librosa.load(raw_path, sr=self.sampling_rate)
|
| 108 |
+
org_length = len(wav)
|
| 109 |
+
if org_length / sr > 50.0:
|
| 110 |
+
raise RuntimeError("Reached Max Length")
|
| 111 |
+
|
| 112 |
+
wav16k = librosa.resample(wav, orig_sr=self.sampling_rate, target_sr=16000)
|
| 113 |
+
wav16k = wav16k
|
| 114 |
+
|
| 115 |
+
hubert = self.vec_model(wav16k)
|
| 116 |
+
hubert = np.repeat(hubert, 2, axis=2).transpose(0, 2, 1).astype(np.float32)
|
| 117 |
+
hubert_length = hubert.shape[1]
|
| 118 |
+
|
| 119 |
+
pitchf = f0_predictor.compute_f0(wav, hubert_length)
|
| 120 |
+
pitchf = pitchf * 2 ** (f0_up_key / 12)
|
| 121 |
+
pitch = pitchf.copy()
|
| 122 |
+
f0_mel = 1127 * np.log(1 + pitch / 700)
|
| 123 |
+
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
|
| 124 |
+
f0_mel_max - f0_mel_min
|
| 125 |
+
) + 1
|
| 126 |
+
f0_mel[f0_mel <= 1] = 1
|
| 127 |
+
f0_mel[f0_mel > 255] = 255
|
| 128 |
+
pitch = np.rint(f0_mel).astype(np.int64)
|
| 129 |
+
|
| 130 |
+
pitchf = pitchf.reshape(1, len(pitchf)).astype(np.float32)
|
| 131 |
+
pitch = pitch.reshape(1, len(pitch))
|
| 132 |
+
ds = np.array([sid]).astype(np.int64)
|
| 133 |
+
|
| 134 |
+
rnd = np.random.randn(1, 192, hubert_length).astype(np.float32)
|
| 135 |
+
hubert_length = np.array([hubert_length]).astype(np.int64)
|
| 136 |
+
|
| 137 |
+
out_wav = self.forward(hubert, hubert_length, pitch, pitchf, ds, rnd).squeeze()
|
| 138 |
+
out_wav = np.pad(out_wav, (0, 2 * self.hop_size), "constant")
|
| 139 |
+
return out_wav[0:org_length]
|
infer_pack/transforms.py
ADDED
|
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch.nn import functional as F
|
| 3 |
+
|
| 4 |
+
import numpy as np
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
DEFAULT_MIN_BIN_WIDTH = 1e-3
|
| 8 |
+
DEFAULT_MIN_BIN_HEIGHT = 1e-3
|
| 9 |
+
DEFAULT_MIN_DERIVATIVE = 1e-3
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def piecewise_rational_quadratic_transform(
|
| 13 |
+
inputs,
|
| 14 |
+
unnormalized_widths,
|
| 15 |
+
unnormalized_heights,
|
| 16 |
+
unnormalized_derivatives,
|
| 17 |
+
inverse=False,
|
| 18 |
+
tails=None,
|
| 19 |
+
tail_bound=1.0,
|
| 20 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
| 21 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
| 22 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE,
|
| 23 |
+
):
|
| 24 |
+
if tails is None:
|
| 25 |
+
spline_fn = rational_quadratic_spline
|
| 26 |
+
spline_kwargs = {}
|
| 27 |
+
else:
|
| 28 |
+
spline_fn = unconstrained_rational_quadratic_spline
|
| 29 |
+
spline_kwargs = {"tails": tails, "tail_bound": tail_bound}
|
| 30 |
+
|
| 31 |
+
outputs, logabsdet = spline_fn(
|
| 32 |
+
inputs=inputs,
|
| 33 |
+
unnormalized_widths=unnormalized_widths,
|
| 34 |
+
unnormalized_heights=unnormalized_heights,
|
| 35 |
+
unnormalized_derivatives=unnormalized_derivatives,
|
| 36 |
+
inverse=inverse,
|
| 37 |
+
min_bin_width=min_bin_width,
|
| 38 |
+
min_bin_height=min_bin_height,
|
| 39 |
+
min_derivative=min_derivative,
|
| 40 |
+
**spline_kwargs
|
| 41 |
+
)
|
| 42 |
+
return outputs, logabsdet
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def searchsorted(bin_locations, inputs, eps=1e-6):
|
| 46 |
+
bin_locations[..., -1] += eps
|
| 47 |
+
return torch.sum(inputs[..., None] >= bin_locations, dim=-1) - 1
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def unconstrained_rational_quadratic_spline(
|
| 51 |
+
inputs,
|
| 52 |
+
unnormalized_widths,
|
| 53 |
+
unnormalized_heights,
|
| 54 |
+
unnormalized_derivatives,
|
| 55 |
+
inverse=False,
|
| 56 |
+
tails="linear",
|
| 57 |
+
tail_bound=1.0,
|
| 58 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
| 59 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
| 60 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE,
|
| 61 |
+
):
|
| 62 |
+
inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
|
| 63 |
+
outside_interval_mask = ~inside_interval_mask
|
| 64 |
+
|
| 65 |
+
outputs = torch.zeros_like(inputs)
|
| 66 |
+
logabsdet = torch.zeros_like(inputs)
|
| 67 |
+
|
| 68 |
+
if tails == "linear":
|
| 69 |
+
unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
|
| 70 |
+
constant = np.log(np.exp(1 - min_derivative) - 1)
|
| 71 |
+
unnormalized_derivatives[..., 0] = constant
|
| 72 |
+
unnormalized_derivatives[..., -1] = constant
|
| 73 |
+
|
| 74 |
+
outputs[outside_interval_mask] = inputs[outside_interval_mask]
|
| 75 |
+
logabsdet[outside_interval_mask] = 0
|
| 76 |
+
else:
|
| 77 |
+
raise RuntimeError("{} tails are not implemented.".format(tails))
|
| 78 |
+
|
| 79 |
+
(
|
| 80 |
+
outputs[inside_interval_mask],
|
| 81 |
+
logabsdet[inside_interval_mask],
|
| 82 |
+
) = rational_quadratic_spline(
|
| 83 |
+
inputs=inputs[inside_interval_mask],
|
| 84 |
+
unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
|
| 85 |
+
unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
|
| 86 |
+
unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
|
| 87 |
+
inverse=inverse,
|
| 88 |
+
left=-tail_bound,
|
| 89 |
+
right=tail_bound,
|
| 90 |
+
bottom=-tail_bound,
|
| 91 |
+
top=tail_bound,
|
| 92 |
+
min_bin_width=min_bin_width,
|
| 93 |
+
min_bin_height=min_bin_height,
|
| 94 |
+
min_derivative=min_derivative,
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
return outputs, logabsdet
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
def rational_quadratic_spline(
|
| 101 |
+
inputs,
|
| 102 |
+
unnormalized_widths,
|
| 103 |
+
unnormalized_heights,
|
| 104 |
+
unnormalized_derivatives,
|
| 105 |
+
inverse=False,
|
| 106 |
+
left=0.0,
|
| 107 |
+
right=1.0,
|
| 108 |
+
bottom=0.0,
|
| 109 |
+
top=1.0,
|
| 110 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
| 111 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
| 112 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE,
|
| 113 |
+
):
|
| 114 |
+
if torch.min(inputs) < left or torch.max(inputs) > right:
|
| 115 |
+
raise ValueError("Input to a transform is not within its domain")
|
| 116 |
+
|
| 117 |
+
num_bins = unnormalized_widths.shape[-1]
|
| 118 |
+
|
| 119 |
+
if min_bin_width * num_bins > 1.0:
|
| 120 |
+
raise ValueError("Minimal bin width too large for the number of bins")
|
| 121 |
+
if min_bin_height * num_bins > 1.0:
|
| 122 |
+
raise ValueError("Minimal bin height too large for the number of bins")
|
| 123 |
+
|
| 124 |
+
widths = F.softmax(unnormalized_widths, dim=-1)
|
| 125 |
+
widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
|
| 126 |
+
cumwidths = torch.cumsum(widths, dim=-1)
|
| 127 |
+
cumwidths = F.pad(cumwidths, pad=(1, 0), mode="constant", value=0.0)
|
| 128 |
+
cumwidths = (right - left) * cumwidths + left
|
| 129 |
+
cumwidths[..., 0] = left
|
| 130 |
+
cumwidths[..., -1] = right
|
| 131 |
+
widths = cumwidths[..., 1:] - cumwidths[..., :-1]
|
| 132 |
+
|
| 133 |
+
derivatives = min_derivative + F.softplus(unnormalized_derivatives)
|
| 134 |
+
|
| 135 |
+
heights = F.softmax(unnormalized_heights, dim=-1)
|
| 136 |
+
heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
|
| 137 |
+
cumheights = torch.cumsum(heights, dim=-1)
|
| 138 |
+
cumheights = F.pad(cumheights, pad=(1, 0), mode="constant", value=0.0)
|
| 139 |
+
cumheights = (top - bottom) * cumheights + bottom
|
| 140 |
+
cumheights[..., 0] = bottom
|
| 141 |
+
cumheights[..., -1] = top
|
| 142 |
+
heights = cumheights[..., 1:] - cumheights[..., :-1]
|
| 143 |
+
|
| 144 |
+
if inverse:
|
| 145 |
+
bin_idx = searchsorted(cumheights, inputs)[..., None]
|
| 146 |
+
else:
|
| 147 |
+
bin_idx = searchsorted(cumwidths, inputs)[..., None]
|
| 148 |
+
|
| 149 |
+
input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
|
| 150 |
+
input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
|
| 151 |
+
|
| 152 |
+
input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
|
| 153 |
+
delta = heights / widths
|
| 154 |
+
input_delta = delta.gather(-1, bin_idx)[..., 0]
|
| 155 |
+
|
| 156 |
+
input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
|
| 157 |
+
input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
|
| 158 |
+
|
| 159 |
+
input_heights = heights.gather(-1, bin_idx)[..., 0]
|
| 160 |
+
|
| 161 |
+
if inverse:
|
| 162 |
+
a = (inputs - input_cumheights) * (
|
| 163 |
+
input_derivatives + input_derivatives_plus_one - 2 * input_delta
|
| 164 |
+
) + input_heights * (input_delta - input_derivatives)
|
| 165 |
+
b = input_heights * input_derivatives - (inputs - input_cumheights) * (
|
| 166 |
+
input_derivatives + input_derivatives_plus_one - 2 * input_delta
|
| 167 |
+
)
|
| 168 |
+
c = -input_delta * (inputs - input_cumheights)
|
| 169 |
+
|
| 170 |
+
discriminant = b.pow(2) - 4 * a * c
|
| 171 |
+
assert (discriminant >= 0).all()
|
| 172 |
+
|
| 173 |
+
root = (2 * c) / (-b - torch.sqrt(discriminant))
|
| 174 |
+
outputs = root * input_bin_widths + input_cumwidths
|
| 175 |
+
|
| 176 |
+
theta_one_minus_theta = root * (1 - root)
|
| 177 |
+
denominator = input_delta + (
|
| 178 |
+
(input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
| 179 |
+
* theta_one_minus_theta
|
| 180 |
+
)
|
| 181 |
+
derivative_numerator = input_delta.pow(2) * (
|
| 182 |
+
input_derivatives_plus_one * root.pow(2)
|
| 183 |
+
+ 2 * input_delta * theta_one_minus_theta
|
| 184 |
+
+ input_derivatives * (1 - root).pow(2)
|
| 185 |
+
)
|
| 186 |
+
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
| 187 |
+
|
| 188 |
+
return outputs, -logabsdet
|
| 189 |
+
else:
|
| 190 |
+
theta = (inputs - input_cumwidths) / input_bin_widths
|
| 191 |
+
theta_one_minus_theta = theta * (1 - theta)
|
| 192 |
+
|
| 193 |
+
numerator = input_heights * (
|
| 194 |
+
input_delta * theta.pow(2) + input_derivatives * theta_one_minus_theta
|
| 195 |
+
)
|
| 196 |
+
denominator = input_delta + (
|
| 197 |
+
(input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
| 198 |
+
* theta_one_minus_theta
|
| 199 |
+
)
|
| 200 |
+
outputs = input_cumheights + numerator / denominator
|
| 201 |
+
|
| 202 |
+
derivative_numerator = input_delta.pow(2) * (
|
| 203 |
+
input_derivatives_plus_one * theta.pow(2)
|
| 204 |
+
+ 2 * input_delta * theta_one_minus_theta
|
| 205 |
+
+ input_derivatives * (1 - theta).pow(2)
|
| 206 |
+
)
|
| 207 |
+
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
| 208 |
+
|
| 209 |
+
return outputs, logabsdet
|
inference.py
ADDED
|
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from glob import glob
|
| 2 |
+
import shutil
|
| 3 |
+
import torch
|
| 4 |
+
from time import strftime
|
| 5 |
+
import os, sys, time
|
| 6 |
+
from argparse import ArgumentParser
|
| 7 |
+
|
| 8 |
+
from src.utils.preprocess import CropAndExtract
|
| 9 |
+
from src.test_audio2coeff import Audio2Coeff
|
| 10 |
+
from src.facerender.animate import AnimateFromCoeff
|
| 11 |
+
from src.generate_batch import get_data
|
| 12 |
+
from src.generate_facerender_batch import get_facerender_data
|
| 13 |
+
from src.utils.init_path import init_path
|
| 14 |
+
|
| 15 |
+
def main(args):
|
| 16 |
+
#torch.backends.cudnn.enabled = False
|
| 17 |
+
|
| 18 |
+
pic_path = args.source_image
|
| 19 |
+
audio_path = args.driven_audio
|
| 20 |
+
save_dir = os.path.join(args.result_dir, strftime("%Y_%m_%d_%H.%M.%S"))
|
| 21 |
+
os.makedirs(save_dir, exist_ok=True)
|
| 22 |
+
pose_style = args.pose_style
|
| 23 |
+
device = args.device
|
| 24 |
+
batch_size = args.batch_size
|
| 25 |
+
input_yaw_list = args.input_yaw
|
| 26 |
+
input_pitch_list = args.input_pitch
|
| 27 |
+
input_roll_list = args.input_roll
|
| 28 |
+
ref_eyeblink = args.ref_eyeblink
|
| 29 |
+
ref_pose = args.ref_pose
|
| 30 |
+
|
| 31 |
+
current_root_path = os.path.split(sys.argv[0])[0]
|
| 32 |
+
|
| 33 |
+
sadtalker_paths = init_path(args.checkpoint_dir, os.path.join(current_root_path, 'src/config'), args.size, args.old_version, args.preprocess)
|
| 34 |
+
|
| 35 |
+
#init model
|
| 36 |
+
preprocess_model = CropAndExtract(sadtalker_paths, device)
|
| 37 |
+
|
| 38 |
+
audio_to_coeff = Audio2Coeff(sadtalker_paths, device)
|
| 39 |
+
|
| 40 |
+
animate_from_coeff = AnimateFromCoeff(sadtalker_paths, device)
|
| 41 |
+
|
| 42 |
+
#crop image and extract 3dmm from image
|
| 43 |
+
first_frame_dir = os.path.join(save_dir, 'first_frame_dir')
|
| 44 |
+
os.makedirs(first_frame_dir, exist_ok=True)
|
| 45 |
+
print('3DMM Extraction for source image')
|
| 46 |
+
first_coeff_path, crop_pic_path, crop_info = preprocess_model.generate(pic_path, first_frame_dir, args.preprocess,\
|
| 47 |
+
source_image_flag=True, pic_size=args.size)
|
| 48 |
+
if first_coeff_path is None:
|
| 49 |
+
print("Can't get the coeffs of the input")
|
| 50 |
+
return
|
| 51 |
+
|
| 52 |
+
if ref_eyeblink is not None:
|
| 53 |
+
ref_eyeblink_videoname = os.path.splitext(os.path.split(ref_eyeblink)[-1])[0]
|
| 54 |
+
ref_eyeblink_frame_dir = os.path.join(save_dir, ref_eyeblink_videoname)
|
| 55 |
+
os.makedirs(ref_eyeblink_frame_dir, exist_ok=True)
|
| 56 |
+
print('3DMM Extraction for the reference video providing eye blinking')
|
| 57 |
+
ref_eyeblink_coeff_path, _, _ = preprocess_model.generate(ref_eyeblink, ref_eyeblink_frame_dir, args.preprocess, source_image_flag=False)
|
| 58 |
+
else:
|
| 59 |
+
ref_eyeblink_coeff_path=None
|
| 60 |
+
|
| 61 |
+
if ref_pose is not None:
|
| 62 |
+
if ref_pose == ref_eyeblink:
|
| 63 |
+
ref_pose_coeff_path = ref_eyeblink_coeff_path
|
| 64 |
+
else:
|
| 65 |
+
ref_pose_videoname = os.path.splitext(os.path.split(ref_pose)[-1])[0]
|
| 66 |
+
ref_pose_frame_dir = os.path.join(save_dir, ref_pose_videoname)
|
| 67 |
+
os.makedirs(ref_pose_frame_dir, exist_ok=True)
|
| 68 |
+
print('3DMM Extraction for the reference video providing pose')
|
| 69 |
+
ref_pose_coeff_path, _, _ = preprocess_model.generate(ref_pose, ref_pose_frame_dir, args.preprocess, source_image_flag=False)
|
| 70 |
+
else:
|
| 71 |
+
ref_pose_coeff_path=None
|
| 72 |
+
|
| 73 |
+
#audio2ceoff
|
| 74 |
+
batch = get_data(first_coeff_path, audio_path, device, ref_eyeblink_coeff_path, still=args.still)
|
| 75 |
+
coeff_path = audio_to_coeff.generate(batch, save_dir, pose_style, ref_pose_coeff_path)
|
| 76 |
+
|
| 77 |
+
# 3dface render
|
| 78 |
+
if args.face3dvis:
|
| 79 |
+
from src.face3d.visualize import gen_composed_video
|
| 80 |
+
gen_composed_video(args, device, first_coeff_path, coeff_path, audio_path, os.path.join(save_dir, '3dface.mp4'))
|
| 81 |
+
|
| 82 |
+
#coeff2video
|
| 83 |
+
data = get_facerender_data(coeff_path, crop_pic_path, first_coeff_path, audio_path,
|
| 84 |
+
batch_size, input_yaw_list, input_pitch_list, input_roll_list,
|
| 85 |
+
expression_scale=args.expression_scale, still_mode=args.still, preprocess=args.preprocess, size=args.size)
|
| 86 |
+
|
| 87 |
+
result = animate_from_coeff.generate(data, save_dir, pic_path, crop_info, \
|
| 88 |
+
enhancer=args.enhancer, background_enhancer=args.background_enhancer, preprocess=args.preprocess, img_size=args.size)
|
| 89 |
+
|
| 90 |
+
shutil.move(result, save_dir+'.mp4')
|
| 91 |
+
print('The generated video is named:', save_dir+'.mp4')
|
| 92 |
+
|
| 93 |
+
if not args.verbose:
|
| 94 |
+
shutil.rmtree(save_dir)
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
if __name__ == '__main__':
|
| 98 |
+
|
| 99 |
+
parser = ArgumentParser()
|
| 100 |
+
parser.add_argument("--driven_audio", default='./examples/driven_audio/bus_chinese.wav', help="path to driven audio")
|
| 101 |
+
parser.add_argument("--source_image", default='./examples/source_image/full_body_1.png', help="path to source image")
|
| 102 |
+
parser.add_argument("--ref_eyeblink", default=None, help="path to reference video providing eye blinking")
|
| 103 |
+
parser.add_argument("--ref_pose", default=None, help="path to reference video providing pose")
|
| 104 |
+
parser.add_argument("--checkpoint_dir", default='./checkpoints', help="path to output")
|
| 105 |
+
parser.add_argument("--result_dir", default='./results', help="path to output")
|
| 106 |
+
parser.add_argument("--pose_style", type=int, default=0, help="input pose style from [0, 46)")
|
| 107 |
+
parser.add_argument("--batch_size", type=int, default=2, help="the batch size of facerender")
|
| 108 |
+
parser.add_argument("--size", type=int, default=256, help="the image size of the facerender")
|
| 109 |
+
parser.add_argument("--expression_scale", type=float, default=1., help="the batch size of facerender")
|
| 110 |
+
parser.add_argument('--input_yaw', nargs='+', type=int, default=None, help="the input yaw degree of the user ")
|
| 111 |
+
parser.add_argument('--input_pitch', nargs='+', type=int, default=None, help="the input pitch degree of the user")
|
| 112 |
+
parser.add_argument('--input_roll', nargs='+', type=int, default=None, help="the input roll degree of the user")
|
| 113 |
+
parser.add_argument('--enhancer', type=str, default=None, help="Face enhancer, [gfpgan, RestoreFormer]")
|
| 114 |
+
parser.add_argument('--background_enhancer', type=str, default=None, help="background enhancer, [realesrgan]")
|
| 115 |
+
parser.add_argument("--cpu", dest="cpu", action="store_true")
|
| 116 |
+
parser.add_argument("--face3dvis", action="store_true", help="generate 3d face and 3d landmarks")
|
| 117 |
+
parser.add_argument("--still", action="store_true", help="can crop back to the original videos for the full body aniamtion")
|
| 118 |
+
parser.add_argument("--preprocess", default='crop', choices=['crop', 'extcrop', 'resize', 'full', 'extfull'], help="how to preprocess the images" )
|
| 119 |
+
parser.add_argument("--verbose",action="store_true", help="saving the intermedia output or not" )
|
| 120 |
+
parser.add_argument("--old_version",action="store_true", help="use the pth other than safetensor version" )
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
# net structure and parameters
|
| 124 |
+
parser.add_argument('--net_recon', type=str, default='resnet50', choices=['resnet18', 'resnet34', 'resnet50'], help='useless')
|
| 125 |
+
parser.add_argument('--init_path', type=str, default=None, help='Useless')
|
| 126 |
+
parser.add_argument('--use_last_fc',default=False, help='zero initialize the last fc')
|
| 127 |
+
parser.add_argument('--bfm_folder', type=str, default='./checkpoints/BFM_Fitting/')
|
| 128 |
+
parser.add_argument('--bfm_model', type=str, default='BFM_model_front.mat', help='bfm model')
|
| 129 |
+
|
| 130 |
+
# default renderer parameters
|
| 131 |
+
parser.add_argument('--focal', type=float, default=1015.)
|
| 132 |
+
parser.add_argument('--center', type=float, default=112.)
|
| 133 |
+
parser.add_argument('--camera_d', type=float, default=10.)
|
| 134 |
+
parser.add_argument('--z_near', type=float, default=5.)
|
| 135 |
+
parser.add_argument('--z_far', type=float, default=15.)
|
| 136 |
+
|
| 137 |
+
args = parser.parse_args()
|
| 138 |
+
|
| 139 |
+
if torch.cuda.is_available() and not args.cpu:
|
| 140 |
+
args.device = "cuda"
|
| 141 |
+
else:
|
| 142 |
+
args.device = "cpu"
|
| 143 |
+
|
| 144 |
+
main(args)
|
| 145 |
+
|
launcher.py
ADDED
|
@@ -0,0 +1,204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# this scripts installs necessary requirements and launches main program in webui.py
|
| 2 |
+
# borrow from : https://github.com/AUTOMATIC1111/stable-diffusion-webui/blob/master/launch.py
|
| 3 |
+
import subprocess
|
| 4 |
+
import os
|
| 5 |
+
import sys
|
| 6 |
+
import importlib.util
|
| 7 |
+
import shlex
|
| 8 |
+
import platform
|
| 9 |
+
import json
|
| 10 |
+
|
| 11 |
+
python = sys.executable
|
| 12 |
+
git = os.environ.get('GIT', "git")
|
| 13 |
+
index_url = os.environ.get('INDEX_URL', "")
|
| 14 |
+
stored_commit_hash = None
|
| 15 |
+
skip_install = False
|
| 16 |
+
dir_repos = "repositories"
|
| 17 |
+
script_path = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
|
| 18 |
+
|
| 19 |
+
if 'GRADIO_ANALYTICS_ENABLED' not in os.environ:
|
| 20 |
+
os.environ['GRADIO_ANALYTICS_ENABLED'] = 'False'
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def check_python_version():
|
| 24 |
+
is_windows = platform.system() == "Windows"
|
| 25 |
+
major = sys.version_info.major
|
| 26 |
+
minor = sys.version_info.minor
|
| 27 |
+
micro = sys.version_info.micro
|
| 28 |
+
|
| 29 |
+
if is_windows:
|
| 30 |
+
supported_minors = [10]
|
| 31 |
+
else:
|
| 32 |
+
supported_minors = [7, 8, 9, 10, 11]
|
| 33 |
+
|
| 34 |
+
if not (major == 3 and minor in supported_minors):
|
| 35 |
+
|
| 36 |
+
raise (f"""
|
| 37 |
+
INCOMPATIBLE PYTHON VERSION
|
| 38 |
+
This program is tested with 3.10.6 Python, but you have {major}.{minor}.{micro}.
|
| 39 |
+
If you encounter an error with "RuntimeError: Couldn't install torch." message,
|
| 40 |
+
or any other error regarding unsuccessful package (library) installation,
|
| 41 |
+
please downgrade (or upgrade) to the latest version of 3.10 Python
|
| 42 |
+
and delete current Python and "venv" folder in WebUI's directory.
|
| 43 |
+
You can download 3.10 Python from here: https://www.python.org/downloads/release/python-3109/
|
| 44 |
+
{"Alternatively, use a binary release of WebUI: https://github.com/AUTOMATIC1111/stable-diffusion-webui/releases" if is_windows else ""}
|
| 45 |
+
Use --skip-python-version-check to suppress this warning.
|
| 46 |
+
""")
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def commit_hash():
|
| 50 |
+
global stored_commit_hash
|
| 51 |
+
|
| 52 |
+
if stored_commit_hash is not None:
|
| 53 |
+
return stored_commit_hash
|
| 54 |
+
|
| 55 |
+
try:
|
| 56 |
+
stored_commit_hash = run(f"{git} rev-parse HEAD").strip()
|
| 57 |
+
except Exception:
|
| 58 |
+
stored_commit_hash = "<none>"
|
| 59 |
+
|
| 60 |
+
return stored_commit_hash
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
def run(command, desc=None, errdesc=None, custom_env=None, live=False):
|
| 64 |
+
if desc is not None:
|
| 65 |
+
print(desc)
|
| 66 |
+
|
| 67 |
+
if live:
|
| 68 |
+
result = subprocess.run(command, shell=True, env=os.environ if custom_env is None else custom_env)
|
| 69 |
+
if result.returncode != 0:
|
| 70 |
+
raise RuntimeError(f"""{errdesc or 'Error running command'}.
|
| 71 |
+
Command: {command}
|
| 72 |
+
Error code: {result.returncode}""")
|
| 73 |
+
|
| 74 |
+
return ""
|
| 75 |
+
|
| 76 |
+
result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True, env=os.environ if custom_env is None else custom_env)
|
| 77 |
+
|
| 78 |
+
if result.returncode != 0:
|
| 79 |
+
|
| 80 |
+
message = f"""{errdesc or 'Error running command'}.
|
| 81 |
+
Command: {command}
|
| 82 |
+
Error code: {result.returncode}
|
| 83 |
+
stdout: {result.stdout.decode(encoding="utf8", errors="ignore") if len(result.stdout)>0 else '<empty>'}
|
| 84 |
+
stderr: {result.stderr.decode(encoding="utf8", errors="ignore") if len(result.stderr)>0 else '<empty>'}
|
| 85 |
+
"""
|
| 86 |
+
raise RuntimeError(message)
|
| 87 |
+
|
| 88 |
+
return result.stdout.decode(encoding="utf8", errors="ignore")
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def check_run(command):
|
| 92 |
+
result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True)
|
| 93 |
+
return result.returncode == 0
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def is_installed(package):
|
| 97 |
+
try:
|
| 98 |
+
spec = importlib.util.find_spec(package)
|
| 99 |
+
except ModuleNotFoundError:
|
| 100 |
+
return False
|
| 101 |
+
|
| 102 |
+
return spec is not None
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
def repo_dir(name):
|
| 106 |
+
return os.path.join(script_path, dir_repos, name)
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
def run_python(code, desc=None, errdesc=None):
|
| 110 |
+
return run(f'"{python}" -c "{code}"', desc, errdesc)
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
def run_pip(args, desc=None):
|
| 114 |
+
if skip_install:
|
| 115 |
+
return
|
| 116 |
+
|
| 117 |
+
index_url_line = f' --index-url {index_url}' if index_url != '' else ''
|
| 118 |
+
return run(f'"{python}" -m pip {args} --prefer-binary{index_url_line}', desc=f"Installing {desc}", errdesc=f"Couldn't install {desc}")
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
def check_run_python(code):
|
| 122 |
+
return check_run(f'"{python}" -c "{code}"')
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
def git_clone(url, dir, name, commithash=None):
|
| 126 |
+
# TODO clone into temporary dir and move if successful
|
| 127 |
+
|
| 128 |
+
if os.path.exists(dir):
|
| 129 |
+
if commithash is None:
|
| 130 |
+
return
|
| 131 |
+
|
| 132 |
+
current_hash = run(f'"{git}" -C "{dir}" rev-parse HEAD', None, f"Couldn't determine {name}'s hash: {commithash}").strip()
|
| 133 |
+
if current_hash == commithash:
|
| 134 |
+
return
|
| 135 |
+
|
| 136 |
+
run(f'"{git}" -C "{dir}" fetch', f"Fetching updates for {name}...", f"Couldn't fetch {name}")
|
| 137 |
+
run(f'"{git}" -C "{dir}" checkout {commithash}', f"Checking out commit for {name} with hash: {commithash}...", f"Couldn't checkout commit {commithash} for {name}")
|
| 138 |
+
return
|
| 139 |
+
|
| 140 |
+
run(f'"{git}" clone "{url}" "{dir}"', f"Cloning {name} into {dir}...", f"Couldn't clone {name}")
|
| 141 |
+
|
| 142 |
+
if commithash is not None:
|
| 143 |
+
run(f'"{git}" -C "{dir}" checkout {commithash}', None, "Couldn't checkout {name}'s hash: {commithash}")
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
def git_pull_recursive(dir):
|
| 147 |
+
for subdir, _, _ in os.walk(dir):
|
| 148 |
+
if os.path.exists(os.path.join(subdir, '.git')):
|
| 149 |
+
try:
|
| 150 |
+
output = subprocess.check_output([git, '-C', subdir, 'pull', '--autostash'])
|
| 151 |
+
print(f"Pulled changes for repository in '{subdir}':\n{output.decode('utf-8').strip()}\n")
|
| 152 |
+
except subprocess.CalledProcessError as e:
|
| 153 |
+
print(f"Couldn't perform 'git pull' on repository in '{subdir}':\n{e.output.decode('utf-8').strip()}\n")
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
def run_extension_installer(extension_dir):
|
| 157 |
+
path_installer = os.path.join(extension_dir, "install.py")
|
| 158 |
+
if not os.path.isfile(path_installer):
|
| 159 |
+
return
|
| 160 |
+
|
| 161 |
+
try:
|
| 162 |
+
env = os.environ.copy()
|
| 163 |
+
env['PYTHONPATH'] = os.path.abspath(".")
|
| 164 |
+
|
| 165 |
+
print(run(f'"{python}" "{path_installer}"', errdesc=f"Error running install.py for extension {extension_dir}", custom_env=env))
|
| 166 |
+
except Exception as e:
|
| 167 |
+
print(e, file=sys.stderr)
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
def prepare_environment():
|
| 171 |
+
global skip_install
|
| 172 |
+
|
| 173 |
+
torch_command = os.environ.get('TORCH_COMMAND', "pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu113")
|
| 174 |
+
|
| 175 |
+
## check windows
|
| 176 |
+
if sys.platform != 'win32':
|
| 177 |
+
requirements_file = os.environ.get('REQS_FILE', "req.txt")
|
| 178 |
+
else:
|
| 179 |
+
requirements_file = os.environ.get('REQS_FILE', "requirements.txt")
|
| 180 |
+
|
| 181 |
+
commit = commit_hash()
|
| 182 |
+
|
| 183 |
+
print(f"Python {sys.version}")
|
| 184 |
+
print(f"Commit hash: {commit}")
|
| 185 |
+
|
| 186 |
+
if not is_installed("torch") or not is_installed("torchvision"):
|
| 187 |
+
run(f'"{python}" -m {torch_command}', "Installing torch and torchvision", "Couldn't install torch", live=True)
|
| 188 |
+
|
| 189 |
+
run_pip(f"install -r \"{requirements_file}\"", "requirements for SadTalker WebUI (may take longer time in first time)")
|
| 190 |
+
|
| 191 |
+
if sys.platform != 'win32' and not is_installed('tts'):
|
| 192 |
+
run_pip(f"install TTS", "install TTS individually in SadTalker, which might not work on windows.")
|
| 193 |
+
|
| 194 |
+
|
| 195 |
+
def start():
|
| 196 |
+
print(f"Launching SadTalker Web UI")
|
| 197 |
+
from app_sadtalker import sadtalker_demo
|
| 198 |
+
demo = sadtalker_demo()
|
| 199 |
+
demo.queue()
|
| 200 |
+
demo.launch()
|
| 201 |
+
|
| 202 |
+
if __name__ == "__main__":
|
| 203 |
+
prepare_environment()
|
| 204 |
+
start()
|
model/arianagrande/Ariana.png
ADDED
|
model/arianagrande/added_IVF1033_Flat_nprobe_1_v2.index
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a47bef476fc29dde668b2727ad4ba3dbcf526a62bcea85204595d28b0b854bbb
|
| 3 |
+
size 127336579
|
model/arianagrande/arianagrande.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9f8199a3f13fed7d6f71d98e89c8bf49cbc00701e0d6581383e320997fd8ed20
|
| 3 |
+
size 55226492
|
model/arianagrande/config.json
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model": "arianagrande.pth",
|
| 3 |
+
"feat_index": "added_IVF1033_Flat_nprobe_1_v2.index",
|
| 4 |
+
"speaker_id": 0,
|
| 5 |
+
|
| 6 |
+
"name": "Ariana Grande",
|
| 7 |
+
"author": "Arithyst",
|
| 8 |
+
"source": "ALL",
|
| 9 |
+
"note": "7 minute dataset (All of the dataset are from her Pro-Tools Dataset), Trained in RVC v2, Crepe Hop Length - 30",
|
| 10 |
+
"icon": "Ariana.png"
|
| 11 |
+
}
|
model/qing/added_IVF1502_Flat_nprobe_1_yiqing_v2.index
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:848b1d99ee7edad4abdcf68d5b3614d48a8f2293dac4d8df542f0a4a472ba0eb
|
| 3 |
+
size 185058859
|
model/qing/config.json
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model": "yiqing.pth",
|
| 3 |
+
"feat_index": "added_IVF1502_Flat_nprobe_1_yiqing_v2.index",
|
| 4 |
+
"speaker_id": 0,
|
| 5 |
+
|
| 6 |
+
"name": "一清清清",
|
| 7 |
+
"author": "滔滔AI",
|
| 8 |
+
"source": "Bilibili",
|
| 9 |
+
"note": "大家好呀!我是音乐人一清清清,这是我的专属AI歌手,希望你们喜欢哦!",
|
| 10 |
+
"icon": "cover.png"
|
| 11 |
+
}
|
model/qing/cover.png
ADDED
|
model/qing/yiqing.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7a833927ad538a960561434d05dc72faa6200ad311268ce320e40a2ef19de14b
|
| 3 |
+
size 57581999
|
model/syz/added_IVF1249_Flat_nprobe_1_syz_v2.index
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c6cd193132c72105867685480bd705af37ae9bfbf875436bc0bbcadcde8ffd1b
|
| 3 |
+
size 153923139
|
model/syz/config.json
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model": "syz.pth",
|
| 3 |
+
"feat_index": "added_IVF1249_Flat_nprobe_1_syz_v2.index",
|
| 4 |
+
"speaker_id": 0,
|
| 5 |
+
|
| 6 |
+
"name": "Stefanie Sun",
|
| 7 |
+
"author": "滔滔AI",
|
| 8 |
+
"source": "ALL",
|
| 9 |
+
"note": "I am AI singer Stefanie Sun",
|
| 10 |
+
"icon": "cover.png"
|
| 11 |
+
}
|
model/syz/cover.png
ADDED
|
model/syz/syz.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3115b4dc888175a4d78a74bacbbc4dc85c8f0be028270306e82b74e1c84f8642
|
| 3 |
+
size 57581999
|
multi_config.json
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"models": [
|
| 3 |
+
"qing", "syz", "arianagrande"
|
| 4 |
+
],
|
| 5 |
+
"examples": {
|
| 6 |
+
"vc": [],
|
| 7 |
+
"tts_vc": []
|
| 8 |
+
}
|
| 9 |
+
}
|
packages.txt
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
ffmpeg
|
| 2 |
+
libsndfile1
|
predict.py
ADDED
|
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""run bash scripts/download_models.sh first to prepare the weights file"""
|
| 2 |
+
import os
|
| 3 |
+
import shutil
|
| 4 |
+
from argparse import Namespace
|
| 5 |
+
from src.utils.preprocess import CropAndExtract
|
| 6 |
+
from src.test_audio2coeff import Audio2Coeff
|
| 7 |
+
from src.facerender.animate import AnimateFromCoeff
|
| 8 |
+
from src.generate_batch import get_data
|
| 9 |
+
from src.generate_facerender_batch import get_facerender_data
|
| 10 |
+
from src.utils.init_path import init_path
|
| 11 |
+
from cog import BasePredictor, Input, Path
|
| 12 |
+
|
| 13 |
+
checkpoints = "checkpoints"
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class Predictor(BasePredictor):
|
| 17 |
+
def setup(self):
|
| 18 |
+
"""Load the model into memory to make running multiple predictions efficient"""
|
| 19 |
+
device = "cuda"
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
sadtalker_paths = init_path(checkpoints,os.path.join("src","config"))
|
| 23 |
+
|
| 24 |
+
# init model
|
| 25 |
+
self.preprocess_model = CropAndExtract(sadtalker_paths, device
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
self.audio_to_coeff = Audio2Coeff(
|
| 29 |
+
sadtalker_paths,
|
| 30 |
+
device,
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
self.animate_from_coeff = {
|
| 34 |
+
"full": AnimateFromCoeff(
|
| 35 |
+
sadtalker_paths,
|
| 36 |
+
device,
|
| 37 |
+
),
|
| 38 |
+
"others": AnimateFromCoeff(
|
| 39 |
+
sadtalker_paths,
|
| 40 |
+
device,
|
| 41 |
+
),
|
| 42 |
+
}
|
| 43 |
+
|
| 44 |
+
def predict(
|
| 45 |
+
self,
|
| 46 |
+
source_image: Path = Input(
|
| 47 |
+
description="Upload the source image, it can be video.mp4 or picture.png",
|
| 48 |
+
),
|
| 49 |
+
driven_audio: Path = Input(
|
| 50 |
+
description="Upload the driven audio, accepts .wav and .mp4 file",
|
| 51 |
+
),
|
| 52 |
+
enhancer: str = Input(
|
| 53 |
+
description="Choose a face enhancer",
|
| 54 |
+
choices=["gfpgan", "RestoreFormer"],
|
| 55 |
+
default="gfpgan",
|
| 56 |
+
),
|
| 57 |
+
preprocess: str = Input(
|
| 58 |
+
description="how to preprocess the images",
|
| 59 |
+
choices=["crop", "resize", "full"],
|
| 60 |
+
default="full",
|
| 61 |
+
),
|
| 62 |
+
ref_eyeblink: Path = Input(
|
| 63 |
+
description="path to reference video providing eye blinking",
|
| 64 |
+
default=None,
|
| 65 |
+
),
|
| 66 |
+
ref_pose: Path = Input(
|
| 67 |
+
description="path to reference video providing pose",
|
| 68 |
+
default=None,
|
| 69 |
+
),
|
| 70 |
+
still: bool = Input(
|
| 71 |
+
description="can crop back to the original videos for the full body aniamtion when preprocess is full",
|
| 72 |
+
default=True,
|
| 73 |
+
),
|
| 74 |
+
) -> Path:
|
| 75 |
+
"""Run a single prediction on the model"""
|
| 76 |
+
|
| 77 |
+
animate_from_coeff = (
|
| 78 |
+
self.animate_from_coeff["full"]
|
| 79 |
+
if preprocess == "full"
|
| 80 |
+
else self.animate_from_coeff["others"]
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
args = load_default()
|
| 84 |
+
args.pic_path = str(source_image)
|
| 85 |
+
args.audio_path = str(driven_audio)
|
| 86 |
+
device = "cuda"
|
| 87 |
+
args.still = still
|
| 88 |
+
args.ref_eyeblink = None if ref_eyeblink is None else str(ref_eyeblink)
|
| 89 |
+
args.ref_pose = None if ref_pose is None else str(ref_pose)
|
| 90 |
+
|
| 91 |
+
# crop image and extract 3dmm from image
|
| 92 |
+
results_dir = "results"
|
| 93 |
+
if os.path.exists(results_dir):
|
| 94 |
+
shutil.rmtree(results_dir)
|
| 95 |
+
os.makedirs(results_dir)
|
| 96 |
+
first_frame_dir = os.path.join(results_dir, "first_frame_dir")
|
| 97 |
+
os.makedirs(first_frame_dir)
|
| 98 |
+
|
| 99 |
+
print("3DMM Extraction for source image")
|
| 100 |
+
first_coeff_path, crop_pic_path, crop_info = self.preprocess_model.generate(
|
| 101 |
+
args.pic_path, first_frame_dir, preprocess, source_image_flag=True
|
| 102 |
+
)
|
| 103 |
+
if first_coeff_path is None:
|
| 104 |
+
print("Can't get the coeffs of the input")
|
| 105 |
+
return
|
| 106 |
+
|
| 107 |
+
if ref_eyeblink is not None:
|
| 108 |
+
ref_eyeblink_videoname = os.path.splitext(os.path.split(ref_eyeblink)[-1])[
|
| 109 |
+
0
|
| 110 |
+
]
|
| 111 |
+
ref_eyeblink_frame_dir = os.path.join(results_dir, ref_eyeblink_videoname)
|
| 112 |
+
os.makedirs(ref_eyeblink_frame_dir, exist_ok=True)
|
| 113 |
+
print("3DMM Extraction for the reference video providing eye blinking")
|
| 114 |
+
ref_eyeblink_coeff_path, _, _ = self.preprocess_model.generate(
|
| 115 |
+
ref_eyeblink, ref_eyeblink_frame_dir
|
| 116 |
+
)
|
| 117 |
+
else:
|
| 118 |
+
ref_eyeblink_coeff_path = None
|
| 119 |
+
|
| 120 |
+
if ref_pose is not None:
|
| 121 |
+
if ref_pose == ref_eyeblink:
|
| 122 |
+
ref_pose_coeff_path = ref_eyeblink_coeff_path
|
| 123 |
+
else:
|
| 124 |
+
ref_pose_videoname = os.path.splitext(os.path.split(ref_pose)[-1])[0]
|
| 125 |
+
ref_pose_frame_dir = os.path.join(results_dir, ref_pose_videoname)
|
| 126 |
+
os.makedirs(ref_pose_frame_dir, exist_ok=True)
|
| 127 |
+
print("3DMM Extraction for the reference video providing pose")
|
| 128 |
+
ref_pose_coeff_path, _, _ = self.preprocess_model.generate(
|
| 129 |
+
ref_pose, ref_pose_frame_dir
|
| 130 |
+
)
|
| 131 |
+
else:
|
| 132 |
+
ref_pose_coeff_path = None
|
| 133 |
+
|
| 134 |
+
# audio2ceoff
|
| 135 |
+
batch = get_data(
|
| 136 |
+
first_coeff_path,
|
| 137 |
+
args.audio_path,
|
| 138 |
+
device,
|
| 139 |
+
ref_eyeblink_coeff_path,
|
| 140 |
+
still=still,
|
| 141 |
+
)
|
| 142 |
+
coeff_path = self.audio_to_coeff.generate(
|
| 143 |
+
batch, results_dir, args.pose_style, ref_pose_coeff_path
|
| 144 |
+
)
|
| 145 |
+
# coeff2video
|
| 146 |
+
print("coeff2video")
|
| 147 |
+
data = get_facerender_data(
|
| 148 |
+
coeff_path,
|
| 149 |
+
crop_pic_path,
|
| 150 |
+
first_coeff_path,
|
| 151 |
+
args.audio_path,
|
| 152 |
+
args.batch_size,
|
| 153 |
+
args.input_yaw,
|
| 154 |
+
args.input_pitch,
|
| 155 |
+
args.input_roll,
|
| 156 |
+
expression_scale=args.expression_scale,
|
| 157 |
+
still_mode=still,
|
| 158 |
+
preprocess=preprocess,
|
| 159 |
+
)
|
| 160 |
+
animate_from_coeff.generate(
|
| 161 |
+
data, results_dir, args.pic_path, crop_info,
|
| 162 |
+
enhancer=enhancer, background_enhancer=args.background_enhancer,
|
| 163 |
+
preprocess=preprocess)
|
| 164 |
+
|
| 165 |
+
output = "/tmp/out.mp4"
|
| 166 |
+
mp4_path = os.path.join(results_dir, [f for f in os.listdir(results_dir) if "enhanced.mp4" in f][0])
|
| 167 |
+
shutil.copy(mp4_path, output)
|
| 168 |
+
|
| 169 |
+
return Path(output)
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
def load_default():
|
| 173 |
+
return Namespace(
|
| 174 |
+
pose_style=0,
|
| 175 |
+
batch_size=2,
|
| 176 |
+
expression_scale=1.0,
|
| 177 |
+
input_yaw=None,
|
| 178 |
+
input_pitch=None,
|
| 179 |
+
input_roll=None,
|
| 180 |
+
background_enhancer=None,
|
| 181 |
+
face3dvis=False,
|
| 182 |
+
net_recon="resnet50",
|
| 183 |
+
init_path=None,
|
| 184 |
+
use_last_fc=False,
|
| 185 |
+
bfm_folder="./src/config/",
|
| 186 |
+
bfm_model="BFM_model_front.mat",
|
| 187 |
+
focal=1015.0,
|
| 188 |
+
center=112.0,
|
| 189 |
+
camera_d=10.0,
|
| 190 |
+
z_near=5.0,
|
| 191 |
+
z_far=15.0,
|
| 192 |
+
)
|
req.txt
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
llvmlite==0.38.1
|
| 2 |
+
numpy==1.21.6
|
| 3 |
+
face_alignment==1.3.5
|
| 4 |
+
imageio==2.19.3
|
| 5 |
+
imageio-ffmpeg==0.4.7
|
| 6 |
+
librosa==0.10.0.post2
|
| 7 |
+
numba==0.55.1
|
| 8 |
+
resampy==0.3.1
|
| 9 |
+
pydub==0.25.1
|
| 10 |
+
scipy==1.10.1
|
| 11 |
+
kornia==0.6.8
|
| 12 |
+
tqdm
|
| 13 |
+
yacs==0.1.8
|
| 14 |
+
pyyaml
|
| 15 |
+
joblib==1.1.0
|
| 16 |
+
scikit-image==0.19.3
|
| 17 |
+
basicsr==1.4.2
|
| 18 |
+
facexlib==0.3.0
|
| 19 |
+
gradio
|
| 20 |
+
gfpgan
|
| 21 |
+
av
|
| 22 |
+
safetensors
|
requirements.txt
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
numpy==1.23.5
|
| 2 |
+
soundfile
|
| 3 |
+
musicdl
|
| 4 |
+
matplotlib
|
| 5 |
+
moviepy
|
| 6 |
+
yt-dlp
|
| 7 |
+
demucs
|
| 8 |
+
gradio
|
| 9 |
+
torch
|
| 10 |
+
flask
|
| 11 |
+
flask-cors
|
| 12 |
+
torchaudio
|
| 13 |
+
fairseq==0.12.2
|
| 14 |
+
scipy==1.10.1
|
| 15 |
+
pyworld>=0.3.2
|
| 16 |
+
faiss-cpu==1.7.3
|
| 17 |
+
praat-parselmouth>=0.4.2
|
| 18 |
+
librosa==0.9.1
|
| 19 |
+
edge-tts
|
| 20 |
+
torchcrepe
|
| 21 |
+
Pillow==9.5.0
|
| 22 |
+
|
| 23 |
+
face_alignment==1.3.5
|
| 24 |
+
imageio==2.19.3
|
| 25 |
+
imageio-ffmpeg==0.4.7
|
| 26 |
+
numba
|
| 27 |
+
resampy==0.3.1
|
| 28 |
+
pydub==0.25.1
|
| 29 |
+
kornia==0.6.8
|
| 30 |
+
tqdm
|
| 31 |
+
yacs==0.1.8
|
| 32 |
+
pyyaml
|
| 33 |
+
joblib==1.1.0
|
| 34 |
+
scikit-image==0.19.3
|
| 35 |
+
basicsr==1.4.2
|
| 36 |
+
facexlib==0.3.0
|
| 37 |
+
dlib-bin
|
| 38 |
+
gfpgan
|
| 39 |
+
av
|
| 40 |
+
safetensors
|
rmvpe.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a5ed4719f59085d1affc5d81354c70828c740584f2d24e782523345a6a278962
|
| 3 |
+
size 181189687
|