import math import os from packaging import version import random import torch from torch import nn import torch.nn.functional as F import torch.utils.data import numpy as np import librosa import librosa.util as librosa_util from librosa.util import normalize, pad_center, tiny from scipy.signal import get_window from scipy.io.wavfile import read from librosa.filters import mel as librosa_mel_fn MAX_WAV_VALUE = 32768.0 def dynamic_range_compression_torch(x, C=1, clip_val=1e-5): """ PARAMS ------ C: compression factor """ return torch.log(torch.clamp(x, min=clip_val) * C) def dynamic_range_decompression_torch(x, C=1): """ PARAMS ------ C: compression factor used to compress """ return torch.exp(x) / C def spectral_normalize_torch(magnitudes): output = dynamic_range_compression_torch(magnitudes) return output def spectral_de_normalize_torch(magnitudes): output = dynamic_range_decompression_torch(magnitudes) return output mel_basis = {} hann_window = {} def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False): if torch.min(y) < -1.: print('min value is ', torch.min(y)) if torch.max(y) > 1.: print('max value is ', torch.max(y)) global hann_window dtype_device = str(y.dtype) + '_' + str(y.device) wnsize_dtype_device = str(win_size) + '_' + dtype_device if wnsize_dtype_device not in hann_window: hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device) y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect') y = y.squeeze(1) if version.parse(torch.__version__) >= version.parse("2"): spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device], center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False) else: spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device], center=center, pad_mode='reflect', normalized=False, onesided=True) spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6) return spec def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax): global mel_basis dtype_device = str(spec.dtype) + '_' + str(spec.device) fmax_dtype_device = str(fmax) + '_' + dtype_device if fmax_dtype_device not in mel_basis: mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax) mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=spec.dtype, device=spec.device) spec = torch.matmul(mel_basis[fmax_dtype_device], spec) spec = spectral_normalize_torch(spec) return spec def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False): if torch.min(y) < -1.: print('min value is ', torch.min(y)) if torch.max(y) > 1.: print('max value is ', torch.max(y)) global mel_basis, hann_window dtype_device = str(y.dtype) + '_' + str(y.device) fmax_dtype_device = str(fmax) + '_' + dtype_device wnsize_dtype_device = str(win_size) + '_' + dtype_device if fmax_dtype_device not in mel_basis: mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax) mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=y.dtype, device=y.device) if wnsize_dtype_device not in hann_window: hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device) y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect') y = y.squeeze(1) if version.parse(torch.__version__) >= version.parse("2"): spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device], center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False) else: spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device], center=center, pad_mode='reflect', normalized=False, onesided=True) spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6) spec = torch.matmul(mel_basis[fmax_dtype_device], spec) spec = spectral_normalize_torch(spec) return spec