MuseV-test / diffusers /tests /pipelines /test_pipelines_combined.py
kevinwang676's picture
Upload folder using huggingface_hub
6755a2d verified
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import torch
from huggingface_hub import ModelCard
from diffusers import (
DDPMScheduler,
DiffusionPipeline,
KandinskyV22CombinedPipeline,
KandinskyV22Pipeline,
KandinskyV22PriorPipeline,
)
from diffusers.pipelines.pipeline_utils import CONNECTED_PIPES_KEYS
def state_dicts_almost_equal(sd1, sd2):
sd1 = dict(sorted(sd1.items()))
sd2 = dict(sorted(sd2.items()))
models_are_equal = True
for ten1, ten2 in zip(sd1.values(), sd2.values()):
if (ten1 - ten2).abs().sum() > 1e-3:
models_are_equal = False
return models_are_equal
class CombinedPipelineFastTest(unittest.TestCase):
def modelcard_has_connected_pipeline(self, model_id):
modelcard = ModelCard.load(model_id)
connected_pipes = {prefix: getattr(modelcard.data, prefix, [None])[0] for prefix in CONNECTED_PIPES_KEYS}
connected_pipes = {k: v for k, v in connected_pipes.items() if v is not None}
return len(connected_pipes) > 0
def test_correct_modelcard_format(self):
# hf-internal-testing/tiny-random-kandinsky-v22-prior has no metadata
assert not self.modelcard_has_connected_pipeline("hf-internal-testing/tiny-random-kandinsky-v22-prior")
# see https://huggingface.co/hf-internal-testing/tiny-random-kandinsky-v22-decoder/blob/8baff9897c6be017013e21b5c562e5a381646c7e/README.md?code=true#L2
assert self.modelcard_has_connected_pipeline("hf-internal-testing/tiny-random-kandinsky-v22-decoder")
def test_load_connected_checkpoint_when_specified(self):
pipeline_prior = DiffusionPipeline.from_pretrained("hf-internal-testing/tiny-random-kandinsky-v22-prior")
pipeline_prior_connected = DiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-random-kandinsky-v22-prior", load_connected_pipeline=True
)
# Passing `load_connected_pipeline` to prior is a no-op as the pipeline has no connected pipeline
assert pipeline_prior.__class__ == pipeline_prior_connected.__class__
pipeline = DiffusionPipeline.from_pretrained("hf-internal-testing/tiny-random-kandinsky-v22-decoder")
pipeline_connected = DiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-random-kandinsky-v22-decoder", load_connected_pipeline=True
)
# Passing `load_connected_pipeline` to decoder loads the combined pipeline
assert pipeline.__class__ != pipeline_connected.__class__
assert pipeline.__class__ == KandinskyV22Pipeline
assert pipeline_connected.__class__ == KandinskyV22CombinedPipeline
# check that loaded components match prior and decoder components
assert set(pipeline_connected.components.keys()) == set(
["prior_" + k for k in pipeline_prior.components.keys()] + list(pipeline.components.keys())
)
def test_load_connected_checkpoint_default(self):
prior = KandinskyV22PriorPipeline.from_pretrained("hf-internal-testing/tiny-random-kandinsky-v22-prior")
decoder = KandinskyV22Pipeline.from_pretrained("hf-internal-testing/tiny-random-kandinsky-v22-decoder")
# check that combined pipeline loads both prior & decoder because of
# https://huggingface.co/hf-internal-testing/tiny-random-kandinsky-v22-decoder/blob/8baff9897c6be017013e21b5c562e5a381646c7e/README.md?code=true#L3
assert (
KandinskyV22CombinedPipeline._load_connected_pipes
) # combined pipelines will download more checkpoints that just the one specified
pipeline = KandinskyV22CombinedPipeline.from_pretrained(
"hf-internal-testing/tiny-random-kandinsky-v22-decoder"
)
prior_comps = prior.components
decoder_comps = decoder.components
for k, component in pipeline.components.items():
if k.startswith("prior_"):
k = k[6:]
comp = prior_comps[k]
else:
comp = decoder_comps[k]
if isinstance(component, torch.nn.Module):
assert state_dicts_almost_equal(component.state_dict(), comp.state_dict())
elif hasattr(component, "config"):
assert dict(component.config) == dict(comp.config)
else:
assert component.__class__ == comp.__class__
def test_load_connected_checkpoint_with_passed_obj(self):
pipeline = KandinskyV22CombinedPipeline.from_pretrained(
"hf-internal-testing/tiny-random-kandinsky-v22-decoder"
)
prior_scheduler = DDPMScheduler.from_config(pipeline.prior_scheduler.config)
scheduler = DDPMScheduler.from_config(pipeline.scheduler.config)
# make sure we pass a different scheduler and prior_scheduler
assert pipeline.prior_scheduler.__class__ != prior_scheduler.__class__
assert pipeline.scheduler.__class__ != scheduler.__class__
pipeline_new = KandinskyV22CombinedPipeline.from_pretrained(
"hf-internal-testing/tiny-random-kandinsky-v22-decoder",
prior_scheduler=prior_scheduler,
scheduler=scheduler,
)
assert dict(pipeline_new.prior_scheduler.config) == dict(prior_scheduler.config)
assert dict(pipeline_new.scheduler.config) == dict(scheduler.config)