# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append('{}/third_party/Matcha-TTS'.format(ROOT_DIR)) import argparse import gradio as gr import numpy as np import torch import random import spaces import logging logging.getLogger('matplotlib').setLevel(logging.WARNING) logging.basicConfig(level=logging.WARNING, format='%(asctime)s %(levelname)s %(message)s') def generate_seed(): seed = random.randint(1, 100000000) return { "__type__": "update", "value": seed } def set_all_random_seed(seed): random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) max_val = 0.8 def postprocess(speech, top_db=60, hop_length=220, win_length=440): speech, _ = librosa.effects.trim( speech, top_db=top_db, frame_length=win_length, hop_length=hop_length ) if speech.abs().max() > max_val: speech = speech / speech.abs().max() * max_val speech = torch.concat([speech, torch.zeros(1, int(target_sr * 0.2))], dim=1) return speech inference_mode_list = ['3s极速复刻', '跨语种复刻'] instruct_dict = {'预训练音色': '1. 选择预训练音色\n2.点击生成音频按钮', '3s极速复刻': '1. 本地上传参考音频,或麦克风录入参考音频,若同时提供,优先选择本地上传的参考音频\n2. 输入参考音频对应的文本内容以及您希望声音复刻的文本内容\n3.点击“一键开启声音复刻之旅吧💕”按钮', '跨语种复刻': '1. 本地上传参考音频,或麦克风录入参考音频,若同时提供,优先选择本地上传的参考音频\n2. 输入参考音频对应的文本内容以及您希望声音复刻的文本内容,建议选择不同语种的文本\n3.点击“一键开启声音复刻之旅吧💕”按钮', '自然语言控制': '1. 输入instruct文本\n2.点击生成音频按钮'} def change_instruction(mode_checkbox_group): return instruct_dict[mode_checkbox_group] @spaces.GPU def generate_audio(tts_text, mode_checkbox_group, sft_dropdown, prompt_text, prompt_wav_upload, prompt_wav_record, instruct_text, seed): return "jay_short.wav" def main(): with gr.Blocks() as demo: gr.Markdown("#
🌊💕🎶 [CosyVoice](https://github.com/FunAudioLLM/CosyVoice) 3秒音频,开启最强声音复刻
") gr.Markdown("##
🌟 只需3秒参考音频,一键开启超拟人真实声音复刻,支持中日英韩粤语,无需任何训练!
") gr.Markdown("###
🤗 更多精彩,尽在[滔滔AI](https://www.talktalkai.com/);滔滔AI,为爱滔滔!💕
") with gr.Row(): tts_text = gr.Textbox(label="请填写您希望声音复刻的文本内容", lines=3, placeholder="想说却还没说的,还很多...") mode_checkbox_group = gr.Radio(choices=inference_mode_list, label='请选择声音复刻类型', value=inference_mode_list[0]) instruction_text = gr.Text(label="📔 操作指南", value=instruct_dict[inference_mode_list[0]], scale=0.5) sft_dropdown = gr.Dropdown(choices=["1", "2"], label='选择预训练音色', value="1", scale=0.25, visible=False) with gr.Column(scale=0.25): seed_button = gr.Button(value="\U0001F3B2", visible=True) seed = gr.Number(value=0, label="随机推理种子", info="默认为0,即每次生成结果一致", visible=True) with gr.Row(): prompt_wav_upload = gr.Audio(sources='upload', type='filepath', label='请从本地上传您喜欢的参考音频,注意采样率不低于16kHz') prompt_wav_record = gr.Audio(sources='microphone', type='filepath', label='通过麦克风录制参考音频,程序会优先使用本地上传的参考音频') prompt_text = gr.Textbox(label="请填写参考音频对应的文本内容", lines=1, value='') instruct_text = gr.Textbox(label="输入instruct文本", lines=1, placeholder="请输入instruct文本.", value='', visible=False) generate_button = gr.Button("一键开启声音复刻之旅吧💕", variant="primary") audio_output = gr.Audio(label="为您生成的专属音频🎶", interactive=True) seed_button.click(generate_seed, inputs=[], outputs=seed) generate_button.click(generate_audio, inputs=[tts_text, mode_checkbox_group, sft_dropdown, prompt_text, prompt_wav_upload, prompt_wav_record, instruct_text, seed], outputs=[audio_output]) mode_checkbox_group.change(fn=change_instruction, inputs=[mode_checkbox_group], outputs=[instruction_text]) gr.Markdown("###
注意❗:请不要生成会对个人以及组织造成侵害的内容,此程序仅供科研、学习及个人娱乐使用。请自觉合规使用此程序,程序开发者不负有任何责任。
") gr.HTML(''' ''') demo.queue() demo.launch(show_error=True) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--port', type=int, default=8000) parser.add_argument('--model_dir', type=str, default='iic/CosyVoice-300M', help='local path or modelscope repo id') args = parser.parse_args() prompt_sr, target_sr = 16000, 22050 default_data = np.zeros(target_sr) main()