# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append('{}/third_party/Matcha-TTS'.format(ROOT_DIR)) import argparse import gradio as gr import numpy as np import torch import random import spaces import logging logging.getLogger('matplotlib').setLevel(logging.WARNING) logging.basicConfig(level=logging.WARNING, format='%(asctime)s %(levelname)s %(message)s') def generate_seed(): seed = random.randint(1, 100000000) return { "__type__": "update", "value": seed } def set_all_random_seed(seed): random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) max_val = 0.8 def postprocess(speech, top_db=60, hop_length=220, win_length=440): speech, _ = librosa.effects.trim( speech, top_db=top_db, frame_length=win_length, hop_length=hop_length ) if speech.abs().max() > max_val: speech = speech / speech.abs().max() * max_val speech = torch.concat([speech, torch.zeros(1, int(target_sr * 0.2))], dim=1) return speech inference_mode_list = ['3s极速复刻', '跨语种复刻'] instruct_dict = {'预训练音色': '1. 选择预训练音色\n2.点击生成音频按钮', '3s极速复刻': '1. 本地上传参考音频,或麦克风录入参考音频,若同时提供,优先选择本地上传的参考音频\n2. 输入参考音频对应的文本内容以及您希望声音复刻的文本内容\n3.点击“一键开启声音复刻之旅吧💕”按钮', '跨语种复刻': '1. 本地上传参考音频,或麦克风录入参考音频,若同时提供,优先选择本地上传的参考音频\n2. 输入参考音频对应的文本内容以及您希望声音复刻的文本内容,建议选择不同语种的文本\n3.点击“一键开启声音复刻之旅吧💕”按钮', '自然语言控制': '1. 输入instruct文本\n2.点击生成音频按钮'} def change_instruction(mode_checkbox_group): return instruct_dict[mode_checkbox_group] @spaces.GPU def generate_audio(tts_text, mode_checkbox_group, sft_dropdown, prompt_text, prompt_wav_upload, prompt_wav_record, instruct_text, seed): return "jay_short.wav" def main(): with gr.Blocks() as demo: gr.Markdown("#