# Copyright (c) 2021 Mobvoi Inc (Binbin Zhang, Di Wu) # 2024 Alibaba Inc (Xiang Lyu) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Modified from ESPnet(https://github.com/espnet/espnet) """Subsampling layer definition.""" from typing import Tuple, Union import torch class BaseSubsampling(torch.nn.Module): def __init__(self): super().__init__() self.right_context = 0 self.subsampling_rate = 1 def position_encoding(self, offset: Union[int, torch.Tensor], size: int) -> torch.Tensor: return self.pos_enc.position_encoding(offset, size) class EmbedinigNoSubsampling(BaseSubsampling): """Embedding input without subsampling """ def __init__(self, idim: int, odim: int, dropout_rate: float, pos_enc_class: torch.nn.Module): super().__init__() self.embed = torch.nn.Embedding(idim, odim) self.pos_enc = pos_enc_class def forward( self, x: torch.Tensor, x_mask: torch.Tensor, offset: Union[int, torch.Tensor] = 0 ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """Input x. Args: x (torch.Tensor): Input tensor (#batch, time, idim). x_mask (torch.Tensor): Input mask (#batch, 1, time). Returns: torch.Tensor: linear input tensor (#batch, time', odim), where time' = time . torch.Tensor: linear input mask (#batch, 1, time'), where time' = time . """ x = self.embed(x) x, pos_emb = self.pos_enc(x, offset) return x, pos_emb, x_mask class LinearNoSubsampling(BaseSubsampling): """Linear transform the input without subsampling Args: idim (int): Input dimension. odim (int): Output dimension. dropout_rate (float): Dropout rate. """ def __init__(self, idim: int, odim: int, dropout_rate: float, pos_enc_class: torch.nn.Module): """Construct an linear object.""" super().__init__() self.out = torch.nn.Sequential( torch.nn.Linear(idim, odim), torch.nn.LayerNorm(odim, eps=1e-5), torch.nn.Dropout(dropout_rate), ) self.pos_enc = pos_enc_class self.right_context = 0 self.subsampling_rate = 1 def forward( self, x: torch.Tensor, x_mask: torch.Tensor, offset: Union[int, torch.Tensor] = 0 ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """Input x. Args: x (torch.Tensor): Input tensor (#batch, time, idim). x_mask (torch.Tensor): Input mask (#batch, 1, time). Returns: torch.Tensor: linear input tensor (#batch, time', odim), where time' = time . torch.Tensor: linear input mask (#batch, 1, time'), where time' = time . """ x = self.out(x) x, pos_emb = self.pos_enc(x, offset) return x, pos_emb, x_mask class Conv1dSubsampling2(BaseSubsampling): """Convolutional 1D subsampling (to 1/2 length). It is designed for Whisper, ref: https://github.com/openai/whisper/blob/main/whisper/model.py Args: idim (int): Input dimension. odim (int): Output dimension. dropout_rate (float): Dropout rate. """ def __init__(self, idim: int, odim: int, dropout_rate: float, pos_enc_class: torch.nn.Module): """Construct an Conv1dSubsampling2 object.""" super().__init__() self.conv = torch.nn.Sequential( torch.nn.Conv1d(idim, odim, kernel_size=3, padding=1), torch.nn.GELU(), torch.nn.Conv1d(odim, odim, kernel_size=3, stride=2, padding=1), torch.nn.GELU(), ) self.pos_enc = pos_enc_class # The right context for every conv layer is computed by: # (kernel_size - 1) * frame_rate_of_this_layer self.subsampling_rate = 2 # 4 = (3 - 1) * 1 + (3 - 1) * 1 self.right_context = 4 def forward( self, x: torch.Tensor, x_mask: torch.Tensor, offset: Union[int, torch.Tensor] = 0 ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """Subsample x. Args: x (torch.Tensor): Input tensor (#batch, time, idim). x_mask (torch.Tensor): Input mask (#batch, 1, time). Returns: torch.Tensor: Subsampled tensor (#batch, time', odim), where time' = time // 2. torch.Tensor: Subsampled mask (#batch, 1, time'), where time' = time // 2. torch.Tensor: positional encoding """ time = x.size(1) x = x.transpose(1, 2) # (b, f, t) x = self.conv(x) x = x.transpose(1, 2) # (b, t, f) x, pos_emb = self.pos_enc(x, offset) return x, pos_emb, x_mask[:, :, (time + 1) % 2::2] class Conv2dSubsampling4(BaseSubsampling): """Convolutional 2D subsampling (to 1/4 length). Args: idim (int): Input dimension. odim (int): Output dimension. dropout_rate (float): Dropout rate. """ def __init__(self, idim: int, odim: int, dropout_rate: float, pos_enc_class: torch.nn.Module): """Construct an Conv2dSubsampling4 object.""" super().__init__() self.conv = torch.nn.Sequential( torch.nn.Conv2d(1, odim, 3, 2), torch.nn.ReLU(), torch.nn.Conv2d(odim, odim, 3, 2), torch.nn.ReLU(), ) self.out = torch.nn.Sequential( torch.nn.Linear(odim * (((idim - 1) // 2 - 1) // 2), odim)) self.pos_enc = pos_enc_class # The right context for every conv layer is computed by: # (kernel_size - 1) * frame_rate_of_this_layer self.subsampling_rate = 4 # 6 = (3 - 1) * 1 + (3 - 1) * 2 self.right_context = 6 def forward( self, x: torch.Tensor, x_mask: torch.Tensor, offset: Union[int, torch.Tensor] = 0 ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """Subsample x. Args: x (torch.Tensor): Input tensor (#batch, time, idim). x_mask (torch.Tensor): Input mask (#batch, 1, time). Returns: torch.Tensor: Subsampled tensor (#batch, time', odim), where time' = time // 4. torch.Tensor: Subsampled mask (#batch, 1, time'), where time' = time // 4. torch.Tensor: positional encoding """ x = x.unsqueeze(1) # (b, c=1, t, f) x = self.conv(x) b, c, t, f = x.size() x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f)) x, pos_emb = self.pos_enc(x, offset) return x, pos_emb, x_mask[:, :, 2::2][:, :, 2::2] class Conv2dSubsampling6(BaseSubsampling): """Convolutional 2D subsampling (to 1/6 length). Args: idim (int): Input dimension. odim (int): Output dimension. dropout_rate (float): Dropout rate. pos_enc (torch.nn.Module): Custom position encoding layer. """ def __init__(self, idim: int, odim: int, dropout_rate: float, pos_enc_class: torch.nn.Module): """Construct an Conv2dSubsampling6 object.""" super().__init__() self.conv = torch.nn.Sequential( torch.nn.Conv2d(1, odim, 3, 2), torch.nn.ReLU(), torch.nn.Conv2d(odim, odim, 5, 3), torch.nn.ReLU(), ) self.linear = torch.nn.Linear(odim * (((idim - 1) // 2 - 2) // 3), odim) self.pos_enc = pos_enc_class # 10 = (3 - 1) * 1 + (5 - 1) * 2 self.subsampling_rate = 6 self.right_context = 10 def forward( self, x: torch.Tensor, x_mask: torch.Tensor, offset: Union[int, torch.Tensor] = 0 ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """Subsample x. Args: x (torch.Tensor): Input tensor (#batch, time, idim). x_mask (torch.Tensor): Input mask (#batch, 1, time). Returns: torch.Tensor: Subsampled tensor (#batch, time', odim), where time' = time // 6. torch.Tensor: Subsampled mask (#batch, 1, time'), where time' = time // 6. torch.Tensor: positional encoding """ x = x.unsqueeze(1) # (b, c, t, f) x = self.conv(x) b, c, t, f = x.size() x = self.linear(x.transpose(1, 2).contiguous().view(b, t, c * f)) x, pos_emb = self.pos_enc(x, offset) return x, pos_emb, x_mask[:, :, 2::2][:, :, 4::3] class Conv2dSubsampling8(BaseSubsampling): """Convolutional 2D subsampling (to 1/8 length). Args: idim (int): Input dimension. odim (int): Output dimension. dropout_rate (float): Dropout rate. """ def __init__(self, idim: int, odim: int, dropout_rate: float, pos_enc_class: torch.nn.Module): """Construct an Conv2dSubsampling8 object.""" super().__init__() self.conv = torch.nn.Sequential( torch.nn.Conv2d(1, odim, 3, 2), torch.nn.ReLU(), torch.nn.Conv2d(odim, odim, 3, 2), torch.nn.ReLU(), torch.nn.Conv2d(odim, odim, 3, 2), torch.nn.ReLU(), ) self.linear = torch.nn.Linear( odim * ((((idim - 1) // 2 - 1) // 2 - 1) // 2), odim) self.pos_enc = pos_enc_class self.subsampling_rate = 8 # 14 = (3 - 1) * 1 + (3 - 1) * 2 + (3 - 1) * 4 self.right_context = 14 def forward( self, x: torch.Tensor, x_mask: torch.Tensor, offset: Union[int, torch.Tensor] = 0 ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """Subsample x. Args: x (torch.Tensor): Input tensor (#batch, time, idim). x_mask (torch.Tensor): Input mask (#batch, 1, time). Returns: torch.Tensor: Subsampled tensor (#batch, time', odim), where time' = time // 8. torch.Tensor: Subsampled mask (#batch, 1, time'), where time' = time // 8. torch.Tensor: positional encoding """ x = x.unsqueeze(1) # (b, c, t, f) x = self.conv(x) b, c, t, f = x.size() x = self.linear(x.transpose(1, 2).contiguous().view(b, t, c * f)) x, pos_emb = self.pos_enc(x, offset) return x, pos_emb, x_mask[:, :, 2::2][:, :, 2::2][:, :, 2::2] class LegacyLinearNoSubsampling(BaseSubsampling): """Linear transform the input without subsampling Args: idim (int): Input dimension. odim (int): Output dimension. dropout_rate (float): Dropout rate. """ def __init__(self, idim: int, odim: int, dropout_rate: float, pos_enc_class: torch.nn.Module): """Construct an linear object.""" super().__init__() self.out = torch.nn.Sequential( torch.nn.Linear(idim, odim), torch.nn.LayerNorm(odim, eps=1e-5), torch.nn.Dropout(dropout_rate), torch.nn.ReLU(), ) self.pos_enc = pos_enc_class self.right_context = 0 self.subsampling_rate = 1 def forward( self, x: torch.Tensor, x_mask: torch.Tensor, offset: Union[int, torch.Tensor] = 0 ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """Input x. Args: x (torch.Tensor): Input tensor (#batch, time, idim). x_mask (torch.Tensor): Input mask (#batch, 1, time). Returns: torch.Tensor: linear input tensor (#batch, time', odim), where time' = time . torch.Tensor: linear input mask (#batch, 1, time'), where time' = time . """ x = self.out(x) x, pos_emb = self.pos_enc(x, offset) return x, pos_emb, x_mask