Spaces:
Build error
Build error
Create test2.py
Browse files
test2.py
ADDED
|
@@ -0,0 +1,449 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.optim as optim
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
from torch.distributions import Categorical
|
| 6 |
+
import numpy as np
|
| 7 |
+
import ale_py
|
| 8 |
+
import gymnasium as gym
|
| 9 |
+
import matplotlib.pyplot as plt
|
| 10 |
+
from collections import deque
|
| 11 |
+
|
| 12 |
+
# Register ALE environments
|
| 13 |
+
gym.register_envs(ale_py)
|
| 14 |
+
|
| 15 |
+
# Set random seeds for reproducibility
|
| 16 |
+
torch.manual_seed(42)
|
| 17 |
+
np.random.seed(42)
|
| 18 |
+
|
| 19 |
+
# Check if GPU is available
|
| 20 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 21 |
+
print(f"Using device: {device}")
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
# ==================== Policy Networks ====================
|
| 25 |
+
|
| 26 |
+
class CartPolePolicy(nn.Module):
|
| 27 |
+
"""Policy network for CartPole environment"""
|
| 28 |
+
def __init__(self, state_dim, action_dim, hidden_dim=128):
|
| 29 |
+
super(CartPolePolicy, self).__init__()
|
| 30 |
+
self.fc1 = nn.Linear(state_dim, hidden_dim)
|
| 31 |
+
self.fc2 = nn.Linear(hidden_dim, action_dim)
|
| 32 |
+
|
| 33 |
+
# Initialize weights
|
| 34 |
+
self._initialize_weights()
|
| 35 |
+
|
| 36 |
+
def _initialize_weights(self):
|
| 37 |
+
"""Initialize network weights"""
|
| 38 |
+
for m in self.modules():
|
| 39 |
+
if isinstance(m, nn.Linear):
|
| 40 |
+
nn.init.xavier_uniform_(m.weight)
|
| 41 |
+
nn.init.constant_(m.bias, 0.0)
|
| 42 |
+
|
| 43 |
+
def forward(self, x):
|
| 44 |
+
x = F.relu(self.fc1(x))
|
| 45 |
+
x = self.fc2(x)
|
| 46 |
+
return F.softmax(x, dim=-1)
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
class PongPolicy(nn.Module):
|
| 50 |
+
"""Policy network for Pong with CNN architecture"""
|
| 51 |
+
def __init__(self, action_dim=2):
|
| 52 |
+
super(PongPolicy, self).__init__()
|
| 53 |
+
# CNN layers for processing 80x80 images
|
| 54 |
+
self.conv1 = nn.Conv2d(1, 16, kernel_size=8, stride=4)
|
| 55 |
+
self.conv2 = nn.Conv2d(16, 32, kernel_size=4, stride=2)
|
| 56 |
+
|
| 57 |
+
# Calculate size after convolutions: 80 -> 19 -> 8
|
| 58 |
+
self.fc1 = nn.Linear(32 * 8 * 8, 256)
|
| 59 |
+
self.fc2 = nn.Linear(256, action_dim)
|
| 60 |
+
|
| 61 |
+
# Initialize weights for better training stability
|
| 62 |
+
self._initialize_weights()
|
| 63 |
+
|
| 64 |
+
def _initialize_weights(self):
|
| 65 |
+
"""Initialize network weights with proper initialization"""
|
| 66 |
+
for m in self.modules():
|
| 67 |
+
if isinstance(m, nn.Conv2d):
|
| 68 |
+
nn.init.kaiming_uniform_(m.weight, nonlinearity='relu')
|
| 69 |
+
if m.bias is not None:
|
| 70 |
+
nn.init.constant_(m.bias, 0.0)
|
| 71 |
+
elif isinstance(m, nn.Linear):
|
| 72 |
+
nn.init.xavier_uniform_(m.weight)
|
| 73 |
+
nn.init.constant_(m.bias, 0.0)
|
| 74 |
+
|
| 75 |
+
def forward(self, x):
|
| 76 |
+
# x shape: (batch, 80, 80) -> add channel dimension
|
| 77 |
+
if len(x.shape) == 2:
|
| 78 |
+
x = x.unsqueeze(0).unsqueeze(0)
|
| 79 |
+
elif len(x.shape) == 3:
|
| 80 |
+
x = x.unsqueeze(1)
|
| 81 |
+
|
| 82 |
+
x = F.relu(self.conv1(x))
|
| 83 |
+
x = F.relu(self.conv2(x))
|
| 84 |
+
x = x.view(x.size(0), -1)
|
| 85 |
+
x = F.relu(self.fc1(x))
|
| 86 |
+
x = self.fc2(x)
|
| 87 |
+
return F.softmax(x, dim=-1)
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
# ==================== Helper Functions ====================
|
| 91 |
+
|
| 92 |
+
def preprocess(image):
|
| 93 |
+
"""Prepro 210x160x3 uint8 frame into 6400 (80x80) 2D float array"""
|
| 94 |
+
image = image[35:195] # crop
|
| 95 |
+
image = image[::2, ::2, 0] # downsample by factor of 2
|
| 96 |
+
image[image == 144] = 0 # erase background (background type 1)
|
| 97 |
+
image[image == 109] = 0 # erase background (background type 2)
|
| 98 |
+
image[image != 0] = 1 # everything else (paddles, ball) just set to 1
|
| 99 |
+
return np.reshape(image.astype(float).ravel(), [80, 80])
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def compute_returns(rewards, gamma):
|
| 103 |
+
"""Compute discounted returns for each timestep"""
|
| 104 |
+
returns = []
|
| 105 |
+
R = 0
|
| 106 |
+
for r in reversed(rewards):
|
| 107 |
+
R = r + gamma * R
|
| 108 |
+
returns.insert(0, R)
|
| 109 |
+
returns = torch.tensor(returns, dtype=torch.float32).to(device)
|
| 110 |
+
# Normalize returns for more stable training
|
| 111 |
+
if len(returns) > 1:
|
| 112 |
+
returns = (returns - returns.mean()) / (returns.std() + 1e-8)
|
| 113 |
+
return returns
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
def moving_average(data, window_size):
|
| 117 |
+
"""Compute moving average"""
|
| 118 |
+
if len(data) < window_size:
|
| 119 |
+
return np.array([np.mean(data[:i+1]) for i in range(len(data))])
|
| 120 |
+
|
| 121 |
+
moving_avg = []
|
| 122 |
+
for i in range(len(data)):
|
| 123 |
+
if i < window_size:
|
| 124 |
+
moving_avg.append(np.mean(data[:i+1]))
|
| 125 |
+
else:
|
| 126 |
+
moving_avg.append(np.mean(data[i-window_size+1:i+1]))
|
| 127 |
+
return np.array(moving_avg)
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
# ==================== Policy Gradient Algorithm ====================
|
| 131 |
+
|
| 132 |
+
def train_policy_gradient(env_name, policy, optimizer, gamma, num_episodes,
|
| 133 |
+
max_steps=None, is_pong=False, action_map=None):
|
| 134 |
+
"""
|
| 135 |
+
Train policy using REINFORCE algorithm
|
| 136 |
+
|
| 137 |
+
Args:
|
| 138 |
+
env_name: Name of the gym environment
|
| 139 |
+
policy: Policy network
|
| 140 |
+
optimizer: PyTorch optimizer
|
| 141 |
+
gamma: Discount factor
|
| 142 |
+
num_episodes: Number of training episodes
|
| 143 |
+
max_steps: Maximum steps per episode (None for default)
|
| 144 |
+
is_pong: Whether this is Pong environment
|
| 145 |
+
action_map: Mapping from policy action to env action (for Pong)
|
| 146 |
+
"""
|
| 147 |
+
env = gym.make(env_name)
|
| 148 |
+
episode_rewards = []
|
| 149 |
+
|
| 150 |
+
for episode in range(num_episodes):
|
| 151 |
+
state, _ = env.reset()
|
| 152 |
+
|
| 153 |
+
# Preprocess state for Pong
|
| 154 |
+
if is_pong:
|
| 155 |
+
state = preprocess(state)
|
| 156 |
+
prev_frame = None # Track previous frame for motion
|
| 157 |
+
|
| 158 |
+
log_probs = []
|
| 159 |
+
rewards = []
|
| 160 |
+
|
| 161 |
+
done = False
|
| 162 |
+
step = 0
|
| 163 |
+
|
| 164 |
+
while not done:
|
| 165 |
+
# For Pong, use frame difference (motion signal)
|
| 166 |
+
if is_pong:
|
| 167 |
+
cur_frame = state
|
| 168 |
+
if prev_frame is not None:
|
| 169 |
+
state_input = cur_frame - prev_frame
|
| 170 |
+
else:
|
| 171 |
+
state_input = np.zeros_like(cur_frame, dtype=np.float32)
|
| 172 |
+
prev_frame = cur_frame
|
| 173 |
+
state_tensor = torch.FloatTensor(state_input).to(device)
|
| 174 |
+
else:
|
| 175 |
+
# Convert state to tensor
|
| 176 |
+
state_tensor = torch.FloatTensor(state).to(device)
|
| 177 |
+
|
| 178 |
+
# Get action probabilities
|
| 179 |
+
action_probs = policy(state_tensor)
|
| 180 |
+
|
| 181 |
+
# Sample action from the distribution
|
| 182 |
+
dist = Categorical(action_probs)
|
| 183 |
+
action = dist.sample()
|
| 184 |
+
log_prob = dist.log_prob(action)
|
| 185 |
+
|
| 186 |
+
# Map action for Pong (0,1 -> 2,3)
|
| 187 |
+
if is_pong:
|
| 188 |
+
env_action = action_map[action.item()]
|
| 189 |
+
else:
|
| 190 |
+
env_action = action.item()
|
| 191 |
+
|
| 192 |
+
# Take action in environment
|
| 193 |
+
next_state, reward, terminated, truncated, _ = env.step(env_action)
|
| 194 |
+
done = terminated or truncated
|
| 195 |
+
|
| 196 |
+
# Preprocess next state for Pong
|
| 197 |
+
if is_pong:
|
| 198 |
+
next_state = preprocess(next_state)
|
| 199 |
+
|
| 200 |
+
# Store log probability and reward
|
| 201 |
+
log_probs.append(log_prob)
|
| 202 |
+
rewards.append(reward)
|
| 203 |
+
|
| 204 |
+
state = next_state
|
| 205 |
+
step += 1
|
| 206 |
+
|
| 207 |
+
if max_steps and step >= max_steps:
|
| 208 |
+
break
|
| 209 |
+
|
| 210 |
+
# Compute returns
|
| 211 |
+
returns = compute_returns(rewards, gamma)
|
| 212 |
+
|
| 213 |
+
# Compute policy gradient loss
|
| 214 |
+
policy_loss = []
|
| 215 |
+
for log_prob, R in zip(log_probs, returns):
|
| 216 |
+
policy_loss.append(-log_prob * R)
|
| 217 |
+
|
| 218 |
+
# Optimize policy
|
| 219 |
+
optimizer.zero_grad()
|
| 220 |
+
policy_loss = torch.stack(policy_loss).sum()
|
| 221 |
+
policy_loss.backward()
|
| 222 |
+
# Gradient clipping for training stability
|
| 223 |
+
torch.nn.utils.clip_grad_norm_(policy.parameters(), max_norm=1.0)
|
| 224 |
+
optimizer.step()
|
| 225 |
+
|
| 226 |
+
# Record episode reward
|
| 227 |
+
episode_reward = sum(rewards)
|
| 228 |
+
episode_rewards.append(episode_reward)
|
| 229 |
+
|
| 230 |
+
# Print progress
|
| 231 |
+
if (episode + 1) % 100 == 0:
|
| 232 |
+
avg_reward = np.mean(episode_rewards[-100:])
|
| 233 |
+
print(f"Episode {episode + 1}/{num_episodes}, "
|
| 234 |
+
f"Avg Reward (last 100): {avg_reward:.2f}")
|
| 235 |
+
|
| 236 |
+
# Save checkpoint for Pong every 500 episodes
|
| 237 |
+
if is_pong and (episode + 1) % 500 == 0:
|
| 238 |
+
checkpoint_path = f'pong_checkpoint_ep{episode + 1}.pth'
|
| 239 |
+
torch.save({
|
| 240 |
+
'episode': episode + 1,
|
| 241 |
+
'policy_state_dict': policy.state_dict(),
|
| 242 |
+
'optimizer_state_dict': optimizer.state_dict(),
|
| 243 |
+
'episode_rewards': episode_rewards,
|
| 244 |
+
}, checkpoint_path)
|
| 245 |
+
print(f" → Checkpoint saved: {checkpoint_path}")
|
| 246 |
+
|
| 247 |
+
env.close()
|
| 248 |
+
return episode_rewards
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
def evaluate_policy(env_name, policy, num_episodes=500, is_pong=False, action_map=None):
|
| 252 |
+
"""Evaluate trained policy over multiple episodes"""
|
| 253 |
+
env = gym.make(env_name)
|
| 254 |
+
eval_rewards = []
|
| 255 |
+
|
| 256 |
+
for episode in range(num_episodes):
|
| 257 |
+
state, _ = env.reset()
|
| 258 |
+
|
| 259 |
+
if is_pong:
|
| 260 |
+
state = preprocess(state)
|
| 261 |
+
prev_frame = None # Track previous frame for motion
|
| 262 |
+
|
| 263 |
+
episode_reward = 0
|
| 264 |
+
done = False
|
| 265 |
+
|
| 266 |
+
while not done:
|
| 267 |
+
# For Pong, use frame difference (motion signal)
|
| 268 |
+
if is_pong:
|
| 269 |
+
cur_frame = state
|
| 270 |
+
if prev_frame is not None:
|
| 271 |
+
state_input = cur_frame - prev_frame
|
| 272 |
+
else:
|
| 273 |
+
state_input = np.zeros_like(cur_frame, dtype=np.float32)
|
| 274 |
+
prev_frame = cur_frame
|
| 275 |
+
state_tensor = torch.FloatTensor(state_input).to(device)
|
| 276 |
+
else:
|
| 277 |
+
state_tensor = torch.FloatTensor(state).to(device)
|
| 278 |
+
|
| 279 |
+
with torch.no_grad():
|
| 280 |
+
action_probs = policy(state_tensor)
|
| 281 |
+
action = torch.argmax(action_probs).item()
|
| 282 |
+
|
| 283 |
+
if is_pong:
|
| 284 |
+
env_action = action_map[action]
|
| 285 |
+
else:
|
| 286 |
+
env_action = action
|
| 287 |
+
|
| 288 |
+
next_state, reward, terminated, truncated, _ = env.step(env_action)
|
| 289 |
+
done = terminated or truncated
|
| 290 |
+
|
| 291 |
+
if is_pong:
|
| 292 |
+
next_state = preprocess(next_state)
|
| 293 |
+
|
| 294 |
+
episode_reward += reward
|
| 295 |
+
state = next_state
|
| 296 |
+
|
| 297 |
+
eval_rewards.append(episode_reward)
|
| 298 |
+
|
| 299 |
+
if (episode + 1) % 100 == 0:
|
| 300 |
+
print(f"Evaluated {episode + 1}/{num_episodes} episodes")
|
| 301 |
+
|
| 302 |
+
env.close()
|
| 303 |
+
return eval_rewards
|
| 304 |
+
|
| 305 |
+
|
| 306 |
+
def plot_results(episode_rewards, eval_rewards, title, save_prefix):
|
| 307 |
+
"""Plot training curve and evaluation histogram"""
|
| 308 |
+
fig, axes = plt.subplots(1, 2, figsize=(15, 5))
|
| 309 |
+
|
| 310 |
+
# Plot training curve
|
| 311 |
+
ax1 = axes[0]
|
| 312 |
+
episodes = np.arange(1, len(episode_rewards) + 1)
|
| 313 |
+
ma = moving_average(episode_rewards, 100)
|
| 314 |
+
|
| 315 |
+
ax1.plot(episodes, episode_rewards, alpha=0.3, label='Episode Reward')
|
| 316 |
+
ax1.plot(episodes, ma, linewidth=2, label='Moving Average (100 episodes)')
|
| 317 |
+
ax1.set_xlabel('Episode')
|
| 318 |
+
ax1.set_ylabel('Reward')
|
| 319 |
+
ax1.set_title(f'{title} - Training Curve')
|
| 320 |
+
ax1.legend()
|
| 321 |
+
ax1.grid(True, alpha=0.3)
|
| 322 |
+
|
| 323 |
+
# Plot evaluation histogram
|
| 324 |
+
ax2 = axes[1]
|
| 325 |
+
mean_reward = np.mean(eval_rewards)
|
| 326 |
+
std_reward = np.std(eval_rewards)
|
| 327 |
+
|
| 328 |
+
ax2.hist(eval_rewards, bins=30, edgecolor='black', alpha=0.7)
|
| 329 |
+
ax2.axvline(mean_reward, color='red', linestyle='--', linewidth=2,
|
| 330 |
+
label=f'Mean: {mean_reward:.2f}')
|
| 331 |
+
ax2.set_xlabel('Episode Reward')
|
| 332 |
+
ax2.set_ylabel('Frequency')
|
| 333 |
+
ax2.set_title(f'{title} - Evaluation Histogram (500 episodes)\n'
|
| 334 |
+
f'Mean: {mean_reward:.2f}, Std: {std_reward:.2f}')
|
| 335 |
+
ax2.legend()
|
| 336 |
+
ax2.grid(True, alpha=0.3, axis='y')
|
| 337 |
+
|
| 338 |
+
plt.tight_layout()
|
| 339 |
+
plt.savefig(f'{save_prefix}_results.png', dpi=150, bbox_inches='tight')
|
| 340 |
+
plt.show()
|
| 341 |
+
|
| 342 |
+
print(f"\n{title} Evaluation Results:")
|
| 343 |
+
print(f"Mean Reward: {mean_reward:.2f}")
|
| 344 |
+
print(f"Std Reward: {std_reward:.2f}")
|
| 345 |
+
|
| 346 |
+
|
| 347 |
+
# ==================== Main Training Scripts ====================
|
| 348 |
+
|
| 349 |
+
def train_cartpole():
|
| 350 |
+
"""Train CartPole-v1"""
|
| 351 |
+
print("\n" + "="*60)
|
| 352 |
+
print("Training CartPole-v1")
|
| 353 |
+
print("="*60 + "\n")
|
| 354 |
+
|
| 355 |
+
# Environment parameters
|
| 356 |
+
env = gym.make('CartPole-v1')
|
| 357 |
+
state_dim = env.observation_space.shape[0]
|
| 358 |
+
action_dim = env.action_space.n
|
| 359 |
+
env.close()
|
| 360 |
+
|
| 361 |
+
# Hyperparameters
|
| 362 |
+
gamma = 0.95
|
| 363 |
+
learning_rate = 0.01
|
| 364 |
+
num_episodes = 1000
|
| 365 |
+
|
| 366 |
+
# Initialize policy and optimizer
|
| 367 |
+
policy = CartPolePolicy(state_dim, action_dim).to(device)
|
| 368 |
+
optimizer = optim.Adam(policy.parameters(), lr=learning_rate)
|
| 369 |
+
|
| 370 |
+
# Train
|
| 371 |
+
episode_rewards = train_policy_gradient(
|
| 372 |
+
'CartPole-v1', policy, optimizer, gamma, num_episodes
|
| 373 |
+
)
|
| 374 |
+
|
| 375 |
+
# Evaluate
|
| 376 |
+
print("\nEvaluating trained policy...")
|
| 377 |
+
eval_rewards = evaluate_policy('CartPole-v1', policy, num_episodes=500)
|
| 378 |
+
|
| 379 |
+
# Plot results
|
| 380 |
+
plot_results(episode_rewards, eval_rewards, 'CartPole-v1', 'cartpole')
|
| 381 |
+
|
| 382 |
+
# Save model
|
| 383 |
+
torch.save(policy.state_dict(), 'cartpole_policy.pth')
|
| 384 |
+
print("\nModel saved as 'cartpole_policy.pth'")
|
| 385 |
+
|
| 386 |
+
return policy, episode_rewards, eval_rewards
|
| 387 |
+
|
| 388 |
+
|
| 389 |
+
def train_pong():
|
| 390 |
+
"""Train Pong-v5"""
|
| 391 |
+
print("\n" + "="*60)
|
| 392 |
+
print("Training Pong-v5")
|
| 393 |
+
print("="*60 + "\n")
|
| 394 |
+
|
| 395 |
+
# Hyperparameters
|
| 396 |
+
gamma = 0.99
|
| 397 |
+
learning_rate = 0.001 # Lower learning rate for stability
|
| 398 |
+
num_episodes = 1000 # Pong requires more episodes
|
| 399 |
+
|
| 400 |
+
# Action mapping: policy outputs 0 or 1, map to RIGHT(2) or LEFT(3)
|
| 401 |
+
action_map = [2, 3] # Index 0->RIGHT(2), Index 1->LEFT(3)
|
| 402 |
+
|
| 403 |
+
# Initialize policy and optimizer
|
| 404 |
+
policy = PongPolicy(action_dim=2).to(device)
|
| 405 |
+
optimizer = optim.Adam(policy.parameters(), lr=learning_rate)
|
| 406 |
+
|
| 407 |
+
print(f"Using learning rate: {learning_rate} (reduced for stability)")
|
| 408 |
+
print(f"Action mapping: 0->RIGHT(2), 1->LEFT(3)")
|
| 409 |
+
print(f"Gradient clipping: max_norm=1.0")
|
| 410 |
+
print(f"Weight initialization: Kaiming (Conv) + Xavier (FC)\n")
|
| 411 |
+
|
| 412 |
+
# Train with periodic checkpointing
|
| 413 |
+
print("Starting training (checkpoints saved every 500 episodes)...\n")
|
| 414 |
+
episode_rewards = train_policy_gradient(
|
| 415 |
+
'ALE/Pong-v5', policy, optimizer, gamma, num_episodes,
|
| 416 |
+
is_pong=True, action_map=action_map
|
| 417 |
+
)
|
| 418 |
+
|
| 419 |
+
print("\nTraining completed!")
|
| 420 |
+
|
| 421 |
+
# Evaluate
|
| 422 |
+
print("\nEvaluating trained policy...")
|
| 423 |
+
eval_rewards = evaluate_policy(
|
| 424 |
+
'ALE/Pong-v5', policy, num_episodes=500,
|
| 425 |
+
is_pong=True, action_map=action_map
|
| 426 |
+
)
|
| 427 |
+
|
| 428 |
+
# Plot results
|
| 429 |
+
plot_results(episode_rewards, eval_rewards, 'Pong-v5', 'pong')
|
| 430 |
+
|
| 431 |
+
# Save model
|
| 432 |
+
torch.save(policy.state_dict(), 'pong_policy.pth')
|
| 433 |
+
print("\nModel saved as 'pong_policy.pth'")
|
| 434 |
+
|
| 435 |
+
return policy, episode_rewards, eval_rewards
|
| 436 |
+
|
| 437 |
+
|
| 438 |
+
# ==================== Run Training ====================
|
| 439 |
+
|
| 440 |
+
if __name__ == "__main__":
|
| 441 |
+
# Train CartPole
|
| 442 |
+
#cartpole_policy, cartpole_train_rewards, cartpole_eval_rewards = train_cartpole()
|
| 443 |
+
|
| 444 |
+
# Train Pong (this will take longer)
|
| 445 |
+
#print("\n\nNote: Pong training will take significantly longer (may take hours)")
|
| 446 |
+
#print("You may want to reduce num_episodes if just testing the code.\n")
|
| 447 |
+
|
| 448 |
+
# Uncomment the line below to train Pong
|
| 449 |
+
pong_policy, pong_train_rewards, pong_eval_rewards = train_pong()
|