""" Much of this code is adapted from Andrej Karpathy's NanoGPT (https://github.com/karpathy/nanoGPT) """ import math from dataclasses import dataclass import torch import torch.nn as nn from torch.nn import functional as F class LayerNorm(nn.Module): """ LayerNorm but with an optional bias. PyTorch doesn't support simply bias=False """ def __init__(self, ndim, bias): super().__init__() self.weight = nn.Parameter(torch.ones(ndim)) self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None def forward(self, input): return F.layer_norm(input, self.weight.shape, self.weight, self.bias, 1e-5) class CausalSelfAttention(nn.Module): def __init__(self, config): super().__init__() assert config.n_embd % config.n_head == 0 # key, query, value projections for all heads, but in a batch self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias) # output projection self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias) # regularization self.attn_dropout = nn.Dropout(config.dropout) self.resid_dropout = nn.Dropout(config.dropout) self.n_head = config.n_head self.n_embd = config.n_embd self.dropout = config.dropout # flash attention make GPU go brrrrr but support is only in PyTorch nightly and still a bit scary self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention') if not self.flash: # print("WARNING: using slow attention. Flash Attention atm needs PyTorch nightly and dropout=0.0") # causal mask to ensure that attention is only applied to the left in the input sequence self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)) .view(1, 1, config.block_size, config.block_size)) def forward(self, x, past_kv=None, use_cache=False): B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd) # calculate query, key, values for all heads in batch and move head forward to be the batch dim q, k ,v = self.c_attn(x).split(self.n_embd, dim=2) k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) if past_kv is not None: past_key = past_kv[0] past_value = past_kv[1] k = torch.cat((past_key, k), dim=-2) v = torch.cat((past_value, v), dim=-2) FULL_T = k.shape[-2] if use_cache is True: present = (k, v) else: present = None # causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T) if self.flash: # efficient attention using Flash Attention CUDA kernels if past_kv is not None: # When `past_kv` is provided, we're doing incremental decoding and `q.shape[2] == 1`: q only contains # the query for the last token. scaled_dot_product_attention interprets this as the first token in the # sequence, so if is_causal=True it will mask out all attention from it. This is not what we want, so # to work around this we set is_causal=False. is_causal = False else: is_causal = True y = torch.nn.functional.scaled_dot_product_attention(q, k, v, dropout_p=self.dropout, is_causal=is_causal) else: # manual implementation of attention att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) att = att.masked_fill(self.bias[:,:,FULL_T-T:FULL_T,:FULL_T] == 0, float('-inf')) att = F.softmax(att, dim=-1) att = self.attn_dropout(att) y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs) y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side # output projection y = self.resid_dropout(self.c_proj(y)) return (y, present) class MLP(nn.Module): def __init__(self, config): super().__init__() self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias) self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias) self.dropout = nn.Dropout(config.dropout) self.gelu = nn.GELU() def forward(self, x): x = self.c_fc(x) x = self.gelu(x) x = self.c_proj(x) x = self.dropout(x) return x class Block(nn.Module): def __init__(self, config, layer_idx): super().__init__() self.ln_1 = LayerNorm(config.n_embd, bias=config.bias) self.attn = CausalSelfAttention(config) self.ln_2 = LayerNorm(config.n_embd, bias=config.bias) self.mlp = MLP(config) self.layer_idx = layer_idx def forward(self, x, past_kv=None, use_cache=False): attn_output, prev_kvs = self.attn(self.ln_1(x), past_kv=past_kv, use_cache=use_cache) x = x + attn_output x = x + self.mlp(self.ln_2(x)) return (x, prev_kvs) @dataclass class GPTConfig: block_size: int = 1024 input_vocab_size: int = 10_048 output_vocab_size: int = 10_048 n_layer: int = 12 n_head: int = 12 n_embd: int = 768 dropout: float = 0.0 bias: bool = True # True: bias in Linears and LayerNorms, like GPT-2. False: a bit better and faster class GPT(nn.Module): def __init__(self, config): super().__init__() assert config.input_vocab_size is not None assert config.output_vocab_size is not None assert config.block_size is not None self.config = config self.transformer = nn.ModuleDict(dict( wte = nn.Embedding(config.input_vocab_size, config.n_embd), wpe = nn.Embedding(config.block_size, config.n_embd), drop = nn.Dropout(config.dropout), h = nn.ModuleList([Block(config, idx) for idx in range(config.n_layer)]), ln_f = LayerNorm(config.n_embd, bias=config.bias), )) self.lm_head = nn.Linear(config.n_embd, config.output_vocab_size, bias=False) def get_num_params(self, non_embedding=True): """ Return the number of parameters in the model. For non-embedding count (default), the position embeddings get subtracted. The token embeddings would too, except due to the parameter sharing these params are actually used as weights in the final layer, so we include them. """ n_params = sum(p.numel() for p in self.parameters()) if non_embedding: n_params -= self.transformer.wte.weight.numel() n_params -= self.transformer.wpe.weight.numel() return n_params def forward(self, idx, merge_context=False, past_kv=None, position_ids=None, use_cache=False): device = idx.device b, t = idx.size() if past_kv is not None: assert t == 1 tok_emb = self.transformer.wte(idx) # token embeddings of shape (b, t, n_embd) else: if merge_context: assert(idx.shape[1] >= 256+256+1) t = idx.shape[1] - 256 else: assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}" # forward the GPT model itself if merge_context: tok_emb = torch.cat([ self.transformer.wte(idx[:,:256]) + self.transformer.wte(idx[:,256:256+256]), self.transformer.wte(idx[:,256+256:]) ], dim=1) else: tok_emb = self.transformer.wte(idx) # token embeddings of shape (b, t, n_embd) if past_kv is None: past_length = 0 past_kv = tuple([None] * len(self.transformer.h)) else: past_length = past_kv[0][0].size(-2) if position_ids is None: position_ids = torch.arange(past_length, t + past_length, dtype=torch.long, device=device) position_ids = position_ids.unsqueeze(0) # shape (1, t) assert position_ids.shape == (1, t) pos_emb = self.transformer.wpe(position_ids) # position embeddings of shape (1, t, n_embd) x = self.transformer.drop(tok_emb + pos_emb) new_kv = () if use_cache else None for i, (block, past_layer_kv) in enumerate(zip(self.transformer.h, past_kv)): x, kv = block(x, past_kv=past_layer_kv, use_cache=use_cache) if use_cache: new_kv = new_kv + (kv,) x = self.transformer.ln_f(x) # inference-time mini-optimization: only forward the lm_head on the very last position logits = self.lm_head(x[:, [-1], :]) # note: using list [-1] to preserve the time dim return (logits, new_kv)