import os import json import glob from collections import defaultdict import pandas as pd import gradio as gr from content import * from css import * import glob ARC = "arc" HELLASWAG = "hellaswag" MMLU = "mmlu" TRUTHFULQA = "truthfulqa" BENCHMARKS = [ARC, HELLASWAG, MMLU, TRUTHFULQA] METRICS = ["acc_norm", "acc_norm", "acc_norm", "mc2"] LANGS = 'ar,bn,ca,da,de,es,eu,fr,gu,hi,hr,hu,hy,id,it,kn,ml,mr,ne,nl,pt,ro,ru,sk,sr,sv,ta,te,uk,vi,zh'.split(',') LANG_NAME = { 'ar': 'Arabic', 'bn': 'Bengali', 'ca': 'Catalan', 'da': 'Danish', 'de': 'German', 'es': 'Spanish', 'eu': 'Basque', 'fr': 'French', 'gu': 'Gujarati', 'hi': 'Hindi', 'hr': 'Croatian', 'hu': 'Hungarian', 'hy': 'Armenian', 'id': 'Indonesian', 'it': 'Italian', 'kn': 'Kannada', 'ml': 'Malayalam', 'mr': 'Marathi', 'ne': 'Nepali', 'nl': 'Dutch', 'pt': 'Portuguese', 'ro': 'Romanian', 'ru': 'Russian', 'sk': 'Slovak', 'sr': 'Serbian', 'sv': 'Swedish', 'ta': 'Tamil', 'te': 'Telugu', 'uk': 'Ukrainian', 'vi': 'Vietnamese', 'zh': 'Chinese' } MODEL_COL = "Model" LANG_COL = "Language" CODE_COL = "Code" AVERAGE_COL = "Average" ARC_COL = "ARC (25-shot)" MGSM_COL = "MGSM" MSVAMP_COL = "MSVAMP" MNUM_COL = "MNumGLUESub" HELLASWAG_COL = "HellaSwag (0-shot)️" MMLU_COL = "MMLU (25-shot)" TRUTHFULQA_COL = "TruthfulQA (0-shot)" NOTES_COL = "Notes" # For search only COLS = [MODEL_COL, LANG_COL, CODE_COL, AVERAGE_COL, ARC_COL, HELLASWAG_COL, MMLU_COL, TRUTHFULQA_COL, NOTES_COL] TYPES = ["str", "str", "str", "number", "number", "number", "number", "number", "str"] COLS = [MODEL_COL, MSVAMP_COL, MGSM_COL, MNUM_COL,NOTES_COL] TYPES = ["str", "number", "number", "number","str"] def get_leaderboard_df(): df = list() results = [ ["GPT-3.5-Turbo", 46.6, 42.2, 49.4], ["MAmmoTH", 26.3, 21.3, 24.2], ["WizardMath", 32.5, 23.0, 28.7], ["MetaMath", 46.2, 37.0, 43.2], ["QAlign", 57.2, 49.6, 0], ["MathOctopus", 41.2, 39.5, 37.1], ["MathOctopus-MAPO-DPO(ours)🔥", 57.4, 41.6, 50.4], ["MetaMathOctopus", 53.0, 45.5, 39.2], ["MetaMathOctopus-MAPO-DPO(ours) 👑", 64.7, 51.6, 52.9], ["MistralMathOctopus", 59.0, 58.0, 56.8], ["MistralMathOctopus-MAPO-DPO(ours) 👑", 74.6, 67.3, 70.0] ] # for (pretrained, lang), perfs in performance_dict.items(): # lang_name = LANG_NAME[lang] # arc_perf = perfs.get(ARC, 0.0) # hellaswag_perf = perfs.get(HELLASWAG, 0.0) # mmlu_perf = perfs.get(MMLU, 0.0) # truthfulqa_perf = perfs.get(TRUTHFULQA, 0.0) # if arc_perf * hellaswag_perf * mmlu_perf * truthfulqa_perf == 0: # continue # avg = round((arc_perf + hellaswag_perf + mmlu_perf + truthfulqa_perf) / 4, 1) # notes = ' '.join([pretrained, lang_name]) # row = [pretrained, lang_name, lang, avg, arc_perf, hellaswag_perf, mmlu_perf, truthfulqa_perf, notes] # df.append(row) for i in results: i.append("NOTE") df = pd.DataFrame.from_records(results, columns=COLS) df = df.sort_values(by=[ MSVAMP_COL], ascending=False) df = df[COLS] return df def search_table(df, query): filtered_df = df[df[NOTES_COL].str.contains(query, case=False)] return filtered_df original_df = get_leaderboard_df() demo = gr.Blocks(css=CUSTOM_CSS) with demo: gr.HTML(TITLE) gr.Markdown(INTRO_TEXT, elem_classes="markdown-text") #gr.Markdown(HOW_TO, elem_classes="markdown-text") with gr.Box(): search_bar = gr.Textbox( placeholder="Search models and languages...", show_label=False, elem_id="search-bar" ) leaderboard_table = gr.components.Dataframe( value=original_df, headers=COLS, datatype=TYPES, max_rows=5, elem_id="leaderboard-table", ) # # Dummy leaderboard for handling the case when the user uses backspace key hidden_leaderboard_table_for_search = gr.components.Dataframe( value=original_df, headers=COLS, datatype=TYPES, max_rows=5, visible=False ) search_bar.change( search_table, [hidden_leaderboard_table_for_search, search_bar], leaderboard_table, ) with gr.Box(): search_bar = gr.Textbox( placeholder="Search models and languages...", show_label=False, elem_id="search-bar" ) leaderboard_table = gr.components.Dataframe( value=original_df, headers=COLS, datatype=TYPES, max_rows=5, elem_id="leaderboard-table", ) # # Dummy leaderboard for handling the case when the user uses backspace key hidden_leaderboard_table_for_search = gr.components.Dataframe( value=original_df, headers=COLS, datatype=TYPES, max_rows=5, visible=False ) search_bar.change( search_table, [hidden_leaderboard_table_for_search, search_bar], leaderboard_table, ) #gr.Markdown(CREDIT, elem_classes="markdown-text") gr.Markdown(CITATION, elem_classes="markdown-text") demo.launch()