"""@package docstring @file demo.py @brief Demonstration of the application of the MSE-CNN Note: In order to run this script, you have to do it inside the folder @section libraries_demo Libraries - msecnn - train_model_utils - cv2 - dataset_utils - re - sys - numpy - gradio - torch - custom_dataset - PIL @section classes_demo Classes - None @section functions_demo Functions - setup_model() - int2label(split) - draw_partition(img, split, cu_pos, cu_size) - split_fm(cu, cu_pos, split) - partition_img(img, img_yuv) - pipeline(img, text) - main() @section global_vars_demo Global Variables - PATH_TO_COEFFS = "../../../model_coefficients/best_coefficients" - LOAD_IMAGE_ERROR = "load_image_error.png" - EXAMPLE_IMGS = ["example_img_1.jpeg", "example_img_2.jpeg"] - CTU_SIZE = (128, 128) - FIRST_CU_POS = torch.tensor([0, 0]).reshape(shape=(-1, 2)) - FIRST_CU_SIZE = torch.tensor([64, 64]).reshape(shape=(-1, 2)) - DEV = "cuda" if torch.cuda.is_available() else "cpu" - QP = 32 - model = None - COLOR = (0, 247, 255) - LINE_THICKNESS = 1 - DEFAULT_TEXT_FOR_COORDS = "Insert CTU position in the image..." @section todo_demo TODO - Instead of obtaining the best split, do the thresholding and then split it until you find the right type of split @section license License MIT License Copyright (c) 2022 Raul Kevin do Espirito Santo Viana Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. @section author_demo Author(s) - Created by Raul Kevin Viana - Last time modified is 2023-09-10 21:00:10.225508 """ # ============================================================== # Imports # ============================================================== import gradio as gr import cv2 as cv import sys import torch from PIL import Image import numpy as np import re import msecnn import dataset_utils as du import custom_dataset as cd import train_model_utils as tmu # ============================================================== # Constants and Global Variables # ============================================================== PATH_TO_COEFFS = "model_coefficients/best_coefficients" LOAD_IMAGE_ERROR = "load_image_error.png" EXAMPLE_IMGS = ["example_img_1.jpeg", "example_img_2.jpeg"] CTU_SIZE = (128, 128) FIRST_CU_POS = torch.tensor([0, 0]).reshape(shape=(-1, 2)) FIRST_CU_SIZE = torch.tensor([64, 64]).reshape(shape=(-1, 2)) DEV = "cuda" if torch.cuda.is_available() else "cpu" QP = 32 model = None COLOR = (0, 247, 255) LINE_THICKNESS = 1 DEFAULT_TEXT_FOR_COORDS = "Insert CTU position in the image..." # ============================================================== # Functions # ============================================================== def setup_model(): """! @brief Initializes and load the parameters of the MSE-CNN """ # Initialize model stg1_2 = msecnn.MseCnnStg1(device=DEV, QP=QP).to(DEV) stg3 = msecnn.MseCnnStgX(device=DEV, QP=QP).to(DEV) stg4 = msecnn.MseCnnStgX(device=DEV, QP=QP).to(DEV) stg5 = msecnn.MseCnnStgX(device=DEV, QP=QP).to(DEV) stg6 = msecnn.MseCnnStgX(device=DEV, QP=QP).to(DEV) model = (stg1_2, stg3, stg4, stg5, stg6) # Load model coefficients model = tmu.load_model_parameters_eval(model, PATH_TO_COEFFS, DEV) return model def int2label(split): """! @brief Obtain the string that corresponds to an integer value of the split @param [in] split: Integer number representing the split tht the model chose @param [out] str_split: Name of the corresponding split """ if split == 0: return "Non-Split" elif split == 1: return "Quad-Tree" elif split == 2: return "Horizontal Binary Tree" elif split == 3: return "Vertical Binary Tree" elif split == 4: return "Horizontal Ternary Tree" elif split == 5: return "Vertical Ternary Tree" else: return "Something wrong happened!" def draw_partition(img, split, cu_pos, cu_size): """! @brief Draw partition in image based in the split outputed by the model @param [in] img: User's input image @param [in] cu_pos: CU position @param [in] cu_size: CU size @param [in] split: Integer number representing the split that the model chose @param [out] str_split: Name of the corresponding split """ # Parameters to draw the lines ver_line_length = cu_size[0] hor_line_length = cu_size[1] if split == 1: line1_start = (cu_pos[0], cu_pos[1]+hor_line_length//2) line1_end = (cu_pos[0]+ver_line_length, cu_pos[1]+hor_line_length//2) line2_start = (cu_pos[0]+ver_line_length//2, cu_pos[1]) line2_end = (cu_pos[0]+ver_line_length//2, cu_pos[1]+hor_line_length) img = cv.line(img, line1_start, line1_end, COLOR, LINE_THICKNESS) img = cv.line(img, line2_start, line2_end, COLOR, LINE_THICKNESS) elif split == 2: line1_start = (cu_pos[0]+ver_line_length//2, cu_pos[1]) line1_end = (cu_pos[0]+ver_line_length//2, cu_pos[1]+hor_line_length) # assert line1_start[0]-line1_end[0] == 0 or line1_start[1]-line1_end[1] == 0 # Make sure that the lines are either horizontal or vertical img = cv.line(img, line1_start, line1_end, COLOR, LINE_THICKNESS) elif split == 3: line1_start = (cu_pos[0], cu_pos[1]+hor_line_length//2) line1_end = (cu_pos[0]+ver_line_length, cu_pos[1]+hor_line_length//2) img = cv.line(img, line1_start, line1_end, COLOR, LINE_THICKNESS) elif split == 4: line1_start = (cu_pos[0]+ver_line_length//3, cu_pos[1]) line1_end = (cu_pos[0]+ver_line_length//3, cu_pos[1]+hor_line_length) line2_start = (cu_pos[0]+(ver_line_length*2)//3, cu_pos[1]) line2_end = (cu_pos[0]+(ver_line_length*2)//3, cu_pos[1]+hor_line_length) img = cv.line(img, line1_start, line1_end, COLOR, LINE_THICKNESS) img = cv.line(img, line2_start, line2_end, COLOR, LINE_THICKNESS) elif split == 5: line1_start = (cu_pos[0], cu_pos[1]+hor_line_length//3) line1_end = (cu_pos[0]+ver_line_length, cu_pos[1]+hor_line_length//3) line2_start = (cu_pos[0], cu_pos[1]+(hor_line_length*2)//3) line2_end = (cu_pos[0]+ver_line_length, cu_pos[1]+(hor_line_length*2)//3) img = cv.line(img, line1_start, line1_end, COLOR, LINE_THICKNESS) img = cv.line(img, line2_start, line2_end, COLOR, LINE_THICKNESS) else: raise Exception("Something wrong happened!") return img def split_fm(cu, cu_pos, split): """! @brief Splits feature maps in specific way @param [in] cu: Input to the model @param [in] cu_pos: Coordinate of the CU @param [in] split: Way to split CU @param [out] cu_out: New Feature maps @param [out] cu_pos_out: Position of the new CUs """ # Initizalize list if split == 0: # Non-split cu_out = cu cu_pos = [cu_pos] elif split == 1: # Quad-tree # Split CU and add to list cu_1 = torch.split(cu, cu.shape[-2]//2, -2) cu_2 = torch.split(cu_1[1], cu_1[1].shape[-1]//2, -1) cu_1 = torch.split(cu_1[0], cu_1[0].shape[-1]//2, -1) cu_out = cu_1 + cu_2 cu_pos = [[cu_pos[0], cu_pos[1]], [cu_pos[0], cu_pos[1]+cu.shape[-1]//2], [cu_pos[0]+cu.shape[-2]//2, cu_pos[1]], [cu_pos[0]+cu.shape[-2]//2, cu_pos[1]+cu.shape[-1]//2]] elif split == 2: # HBT # Split CU and add to list cu_out = torch.split(cu, cu.shape[-2]//2, -2) cu_pos = [[cu_pos[0], cu_pos[1]], [cu_pos[0]+cu.shape[-2]//2, cu_pos[1]]] elif split == 3: # VBT # Split CU and add to list cu_out = torch.split(cu, cu.shape[-1]//2, -1) cu_pos = [[cu_pos[0], cu_pos[1]], [cu_pos[0], cu_pos[1]+cu.shape[-1]//2]] elif split == 4: # HTT # Split CU and add to list cu_out = torch.split(cu, cu.shape[-2]//3, -2) cu_pos = [[cu_pos[0], cu_pos[1]], [cu_pos[0]+cu.shape[-2]//3, cu_pos[1]], [(2*cu.shape[-2])//3+cu_pos[0], cu_pos[1]]] elif split == 5: # VTT # Split CU and add to list cu_out = torch.split(cu, cu.shape[-1]//3, -1) cu_pos = [[cu_pos[0], cu_pos[1]], [cu_pos[0], cu_pos[1]+cu.shape[-1]//3], [(2*cu.shape[-1])//3+cu_pos[0], cu_pos[1]]] else: raise Exception("This can't happen! Wrong split mode number: ", str(split)) if type(cu_out) is tuple: if len(cu_out) != 1: cu_out = torch.cat(cu_out) else: cu_out = cu_out[0] return cu_out, cu_pos def partition_img(img, img_yuv): """! @brief Partitions a full 128x128 CTU and draws the partition in the original image TODO: Instead of obtaining the best split, do the thresholding and then split it until you find the right type of split @param [in] img: Image in BGR @param [in] img_yuv: Image in YUV @param [in] stg: Current stage being partitioned @param [in] cu_pos: Current stage being partitioned @param [in] cu_size: Current stage being partitioned @param [out] img: Image in with partitions drawn to it """ global model # Stage 1 and 2 pos_1 = torch.tensor([[0, 0]]) pos_2 = torch.tensor([[0, 64]]) pos_3 = torch.tensor([[64, 0]]) pos_4 = torch.tensor([[64, 64]]) split_1, CUs_1, ap_1 = model[0](img_yuv, FIRST_CU_SIZE, pos_1) split_2, CUs_2, ap_2 = model[0](img_yuv, FIRST_CU_SIZE, pos_2) split_3, CUs_3, ap_3 = model[0](img_yuv, FIRST_CU_SIZE, pos_3) split_4, CUs_4, ap_4 = model[0](img_yuv, FIRST_CU_SIZE, pos_4) all_cus_stg1 = [(split_1, CUs_1, ap_1, (0, 0)), (split_2, CUs_2, ap_2, (0, 64)), (split_3, CUs_3, ap_3, (64, 0)), (split_4, CUs_4, ap_4, (64, 64))] img = draw_partition(img, 1, (0, 0), (128, 128)) # Stage 2: spliting for cus_stg1 in all_cus_stg1: split_stg1, cu_stg1, ap_stg1, pos_stg1 = cus_stg1 split_stg1 = tmu.obtain_mode(split_stg1) if split_stg1 == 0: continue # compute new cus try: cu_out_2, cu_pos_2 = split_fm(cu_stg1, pos_stg1, split_stg1) except RuntimeError: # Weird partition happened continue # draw partition to original image img = draw_partition(img, split_stg1, pos_stg1, (cu_stg1.shape[-2], cu_stg1.shape[-1])) all_cus_stg2 = [(cu_out_2[idx, :, :, :].unsqueeze(0), ap_stg1, cu_pos_2[idx]) for idx in range(cu_out_2.shape[0])] # Stage 3 for cus_stg2 in all_cus_stg2: cu_stg2, ap_stg2, pos_stg2 = cus_stg2 pred_stg3, cu_stg3, ap_stg3 = model[1](cu_stg2, ap_stg2) pred_stg3 = tmu.obtain_mode(pred_stg3) # ap_stg3 = ap_stg3.item() if pred_stg3 == 0: continue # compute new cus try: cu_out_3, cu_pos_3 = split_fm(cu_stg3, pos_stg2, pred_stg3) except RuntimeError: # Weird partition happened; skip continue # draw partition to original image img = draw_partition(img, pred_stg3, pos_stg2, (cu_stg3.shape[-2], cu_stg3.shape[-1])) all_cus_stg3 = [(cu_out_3[idx, :, :, :].unsqueeze(0), ap_stg3, cu_pos_3[idx]) for idx in range(cu_out_3.shape[0])] # Stage 4 for cus_stg3 in all_cus_stg3: cu_stg3, ap_stg3, pos_stg3 = cus_stg3 pred_stg4, cu_stg4, ap_stg4 = model[2](cu_stg3, ap_stg3) pred_stg4 = tmu.obtain_mode(pred_stg4) # ap_stg4 = ap_stg4.item() if pred_stg4 == 0: continue # compute new cus try: cu_out_4, cu_pos_4 = split_fm(cu_stg4, pos_stg3, pred_stg4) except RuntimeError: # Weird partition happened; skip continue # draw partition to original image img = draw_partition(img, pred_stg4, pos_stg3, (cu_stg4.shape[-2], cu_stg4.shape[-1])) all_cus_stg4 = [(cu_out_4[idx, :, :, :].unsqueeze(0), ap_stg4, cu_pos_4[idx]) for idx in range(cu_out_4.shape[0])] # Stage 5 for cus_stg4 in all_cus_stg4: cu_stg4, ap_stg4, pos_stg4 = cus_stg4 pred_stg5, cu_stg5, ap_stg5 = model[3](cu_stg4, ap_stg4) pred_stg5 = tmu.obtain_mode(pred_stg5) # ap_stg5 = ap_stg5.item() if pred_stg5 == 0: continue # compute new cus try: cu_out_5, cu_pos_5 = split_fm(cu_stg5, pos_stg4, pred_stg5) except RuntimeError: # Weird partition happened; skip continue # draw partition to original image img = draw_partition(img, pred_stg5, pos_stg4, (cu_stg5.shape[-2], cu_stg5.shape[-1])) all_cus_stg5 = [(cu_out_5[idx, :, :, :].unsqueeze(0), ap_stg5, cu_pos_5[idx]) for idx in range(cu_out_5.shape[0])] # Stage 6 for cus_stg5 in all_cus_stg5: cu_stg5, ap_stg5, pos_stg5 = cus_stg5 pred_stg6, cu_stg6, ap_stg6 = model[4](cu_stg5, ap_stg5) pred_stg6 = tmu.obtain_mode(pred_stg6) # ap_stg6 = ap_stg6.item() if pred_stg6 == 0: continue # draw partition to original image img = draw_partition(img, pred_stg6, pos_stg5, (cu_stg6.shape[-2], cu_stg6.shape[-1])) return img def pipeline(img, text): """! @brief Pipeline to implement the functionalities to demonstrate the potential of the MSE-CNN @param [in] img: Image in RGB @param [out] mod_img: Modified image with drawings into it in RGB @param [out] best_split: Best split (BTV, BTH, TTV, TTH, Non-split, QT) """ global model # Obtain coordinates of the CTU coords = re.findall(r"\d+", text) coords = list(map(lambda x: int(x), coords)) # In case nothing is submitted, return a default image and text if type(img) is type(None) or type(text) is type(None) or text == DEFAULT_TEXT_FOR_COORDS: img_error = Image.open(LOAD_IMAGE_ERROR) # Replace with the path to your first image file img_error = np.array(img_error) return img_error, "Load the image first and also make sure you specify the position of the CTU!" # Convert image to appropriate size img = img[coords[0]:coords[0]+128, coords[1]:coords[1]+128, :] if img.shape[0] % 2 != 0: img = img[: img.shape[0]-1, :, :] if img.shape[1] % 2 != 0: img = img[:, :img.shape[1]-1, :] # convert to yuv img_yuv = cv.cvtColor(img, cv.COLOR_RGB2YUV_I420) # convert to pytorch tensor img_yuv = torch.from_numpy(img_yuv) # obtain luma channel _, ctu_y, _, _ = cd.get_cu_v2(img_yuv, CTU_SIZE, (0, 0), CTU_SIZE) # change shape ctu_y = torch.reshape(ctu_y, (1, 1, 128, 128)).to(DEV).float() # Load model model = setup_model() # Partition Image img = partition_img(img, ctu_y) return img, "Partitioned Image" def main(): with open("description.md", encoding="utf-8") as f: description = f.read() with gr.Blocks(title="MSE-CNN Demo") as demo: gr.Markdown(f"## MSE-CNN Demo\n\n{description}") with gr.Row(): in_image = gr.Image(label="Input image") in_text_box = gr.Textbox( value=DEFAULT_TEXT_FOR_COORDS, label="Coordinates of CTU", placeholder="e.g. 300, 800" ) out_image = gr.Image(label="Partitioned CTU") out_text_box = gr.Textbox(label="Completion Message") # This is your manual “Submit” button: submit_btn = gr.Button("Submit") # Wire the button to your pipeline: submit_btn.click( fn=pipeline, inputs=[in_image, in_text_box], outputs=[out_image, out_text_box] ) gr.Examples( examples=[ [EXAMPLE_IMGS[0], "300, 800"], [EXAMPLE_IMGS[0], "100, 200"], [EXAMPLE_IMGS[1], "600, 925"], [EXAMPLE_IMGS[1], "450, 1600"], ], inputs=[in_image, in_text_box], outputs=[out_image, out_text_box], fn=pipeline, #thumbnail="msecnn_model.png", # ← still supported here cache_examples=False ) demo.launch() # ============================================================== # Main # ============================================================== if __name__ == "__main__": main()