# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # -*- coding: utf-8 -*- """biomedparse_inference_demo.ipynb Automatically generated by Colab. Original file is located at https://colab.research.google.com/drive/1jL4wvdtBWz6G_yBkFn8tyDD0hV1RtKVZ # BiomedParse Inference Demo Notebook Welcome to the demo notebook for BiomedParse, a comprehensive tool for biomedical image analysis. BiomedParse is designed to simultaneously handle segmentation, detection, and recognition tasks across major biomedical image modalities, providing a unified solution for complex image analysis in biomedical research. [[`Paper`](https://aka.ms/biomedparse-paper)] [[`Demo`](https://microsoft.github.io/BiomedParse/)] [[`Model`](https://huggingface.co/microsoft/BiomedParse)] [[`Data`](https://huggingface.co/datasets/microsoft/BiomedParseData)] ## Model Checkpoint Access The BiomedParse model checkpoint is hosted on [HuggingFace](https://huggingface.co/microsoft/BiomedParse). To access the model: 1. Visit the [model page](https://huggingface.co/microsoft/BiomedParse). 2. Make sure to review and accept the terms of use to gain access to the checkpoint. 3. Retrieve your HuggingFace access token from your user profile. ## Setting Up Access To use the model, set your Hugging Face access token in the HF_TOKEN environment variable or as a Colab secret. This step ensures secure and authorized access to the model resources. """ # Set your Hugging Face access token in your environment # import os # os.environ['HF_TOKEN'] = 'your_huggingface_access_token_here' # Or, if you are using Google Colab, set HF_TOKEN on Colab secrets. from google.colab import userdata import huggingface_hub huggingface_hub.login(userdata.get('HF_TOKEN')) from huggingface_hub import hf_hub_download model_file = hf_hub_download(repo_id="microsoft/BiomedParse", filename="biomedparse_v1.pt", local_dir="pretrained") print(f"Downloaded model file to: {model_file}") """## Environment Setup""" !git clone https://github.com/microsoft/BiomedParse !pip install -r BiomedParse/assets/requirements/requirements.txt """# Restart Colab Runtime""" # Make sure to restart Colab runtime after installing dependencies import os try: import google.colab os._exit(0) except ImportError: pass import os os.chdir('/content/BiomedParse') print(os.getcwd()) """## Load the model weights""" from PIL import Image import torch import argparse import numpy as np from modeling.BaseModel import BaseModel from modeling import build_model from utilities.distributed import init_distributed # changed from utils from utilities.arguments import load_opt_from_config_files from utilities.constants import BIOMED_CLASSES from inference_utils.inference import interactive_infer_image conf_files = "configs/biomedparse_inference.yaml" opt = load_opt_from_config_files([conf_files]) opt = init_distributed(opt) model_file = "../pretrained/biomedparse_v1.pt" model = BaseModel(opt, build_model(opt)).from_pretrained(model_file).eval().cuda() with torch.no_grad(): model.model.sem_seg_head.predictor.lang_encoder.get_text_embeddings(BIOMED_CLASSES + ["background"], is_eval=True) """# Run Inference""" # RGB image input of shape (H, W, 3). Currently only batch size 1 is supported. image = Image.open('examples/Part_1_516_pathology_breast.png', formats=['png']) image = image.convert('RGB') # text prompts querying objects in the image. Multiple ones can be provided. prompts = ['neoplastic cells', 'inflammatory cells'] pred_mask = interactive_infer_image(model, image, prompts) pred_mask.shape # load ground truth mask gt_masks = [] for prompt in prompts: gt_mask = Image.open(f"examples/Part_1_516_pathology_breast_{prompt.replace(' ', '+')}.png", formats=['png']) gt_mask = 1*(np.array(gt_mask.convert('RGB'))[:,:,0] > 0) gt_masks.append(gt_mask) # prediction with ground truth mask for i, pred in enumerate(pred_mask): gt = gt_masks[i] dice = (1*(pred>0.5) & gt).sum() * 2.0 / (1*(pred>0.5).sum() + gt.sum()) print(f'Dice score for {prompts[i]}: {dice:.4f}') import numpy as np import matplotlib.pyplot as plt from PIL import Image import matplotlib.patches as mpatches def overlay_masks(image, masks, colors): overlay = image.copy() overlay = np.array(overlay, dtype=np.uint8) for mask, color in zip(masks, colors): overlay[mask > 0] = (overlay[mask > 0] * 0.4 + np.array(color) * 0.6).astype(np.uint8) return Image.fromarray(overlay) def generate_colors(n): cmap = plt.get_cmap('tab10') colors = [tuple(int(255 * val) for val in cmap(i)[:3]) for i in range(n)] return colors original_image = Image.open('examples/Part_1_516_pathology_breast.png').convert('RGB') colors = generate_colors(len(prompts)) pred_overlay = overlay_masks(original_image, [1*(pred_mask[i] > 0.5) for i in range(len(prompts))], colors) gt_overlay = overlay_masks(original_image, gt_masks, colors) legend_patches = [mpatches.Patch(color=np.array(color) / 255, label=prompt) for color, prompt in zip(colors, prompts)] fig, axes = plt.subplots(1, 3, figsize=(15, 5)) axes[0].imshow(original_image) axes[0].set_title("Original Image") axes[0].axis('off') axes[1].imshow(pred_overlay) axes[1].set_title("Predictions") axes[1].axis('off') axes[1].legend(handles=legend_patches, loc='upper right', fontsize='small') axes[2].imshow(gt_overlay) axes[2].set_title("Ground Truth") axes[2].axis('off') axes[2].legend(handles=legend_patches, loc='upper right', fontsize='small') plt.tight_layout() plt.show()