from pathlib import Path import os import json import gradio as gr import yolov5 from PIL import Image from huggingface_hub import hf_hub_download app_title = "Valorant Object Detection" models_ids = ['keremberke/yolov5n-valorant', 'keremberke/yolov5s-valorant', 'keremberke/yolov5m-valorant'] article = f"
huggingface.co/{models_ids[-1]} | huggingface.co/keremberke/valorant-object-detection | awesome-yolov5-models
" current_model_id = models_ids[-1] model = yolov5.load(current_model_id) if "test_images": image_filenames = os.listdir(test_images) examples = [ [Path(test_images) / image_filename, 0.25, models_ids[-1]] for image_filename in image_filenames ] else: examples = None def predict(image, threshold=0.25, model_id=None): # update model if required global current_model_id global model if model_id != current_model_id: model = yolov5.load(model_id) current_model_id = model_id # get model input size config_path = hf_hub_download(repo_id=model_id, filename="config.json") with open(config_path, "r") as f: config = json.load(f) input_size = config["input_size"] # perform inference model.conf = threshold results = model(image, size=input_size) numpy_image = results.render()[0] output_image = Image.fromarray(numpy_image) return output_image gr.Interface( title=app_title, description="Created by 'keremberke'", article=article, fn=predict, inputs=[ gr.Image(type="pil"), gr.Slider(maximum=1, step=0.01, value=0.25), gr.Dropdown(models_ids, value=models_ids[-1]), ], outputs=gr.Image(type="pil"), examples=examples, cache_examples=True if examples else False, ).launch(enable_queue=True)