import json import gradio as gr import yolov5 from PIL import Image from huggingface_hub import hf_hub_download app_title = "Clash of Clans Object Detection" models_ids = ['keremberke/yolov5n-clash-of-clans', 'keremberke/yolov5s-clash-of-clans', 'keremberke/yolov5m-clash-of-clans'] article = f"

huggingface.co/{models_ids[-1]} | huggingface.co/keremberke/clash-of-clans-object-detection | awesome-yolov5-models

" current_model_id = models_ids[-1] model = yolov5.load(current_model_id) examples = [['test_images/IMG_1879_jpg.rf.c0e9cd93962f7cf2df6fbeef63ab6ed9.jpg', 0.25, 'keremberke/yolov5m-clash-of-clans'], ['test_images/IMG_1906_jpg.rf.e3d1ef9a4c55d6576e95ba057984d204.jpg', 0.25, 'keremberke/yolov5m-clash-of-clans'], ['test_images/IMG_1931_jpg.rf.16f42f6d309c3de5661625af454aeb0c.jpg', 0.25, 'keremberke/yolov5m-clash-of-clans'], ['test_images/IMG_2016_jpg.rf.6013a2119e90b56bb2a07d83954dc637.jpg', 0.25, 'keremberke/yolov5m-clash-of-clans'], ['test_images/IMG_2023_jpg.rf.01d180bc2ed3d5bab7b0026cd8e4c09a.jpg', 0.25, 'keremberke/yolov5m-clash-of-clans'], ['test_images/IMG_2034_jpg.rf.40ab3489487d018d0112f49622f0f9a0.jpg', 0.25, 'keremberke/yolov5m-clash-of-clans']] def predict(image, threshold=0.25, model_id=None): # update model if required global current_model_id global model if model_id != current_model_id: model = yolov5.load(model_id) current_model_id = model_id # get model input size config_path = hf_hub_download(repo_id=model_id, filename="config.json") with open(config_path, "r") as f: config = json.load(f) input_size = config["input_size"] # perform inference model.conf = threshold results = model(image, size=input_size) numpy_image = results.render()[0] output_image = Image.fromarray(numpy_image) return output_image gr.Interface( title=app_title, description="Created by 'keremberke'", article=article, fn=predict, inputs=[ gr.Image(type="pil"), gr.Slider(maximum=1, step=0.01, value=0.25), gr.Dropdown(models_ids, value=models_ids[-1]), ], outputs=gr.Image(type="pil"), examples=examples, cache_examples=True if examples else False, ).launch(enable_queue=True)