import glob import gradio as gr import tensorflow as tf from utils.predict import predict_label ##Create list of examples to be loaded example_list = glob.glob("examples/*.mp4") example_list = list(map(lambda el:[el], example_list)) demo = gr.Blocks() with demo: gr.Markdown("# **

Video Vision Transformer on medmnist

**") with gr.Tab("Upload & Predict"): with gr.Box(): with gr.Row(): input_video = gr.Video(label="Input Video", show_label=True) output_label = gr.Label(label="Model Output", show_label=True) gr.Markdown("**Predict**") with gr.Box(): with gr.Row(): submit_button = gr.Button("Submit") gr.Markdown("The model is trained to classify videos belonging to the following classes: liver, kidney-right, kidney-left, femur-right, femur-left, bladder, heart, lung-right, lung-left, spleen and pancreas") gr.Examples(example_list, [input_video], [output_label], predict_label, cache_examples=True) submit_button.click(predict_label, inputs=input_video, outputs=output_label) gr.Markdown('\n Demo created by: Pablo Rodríguez
Based on the Keras example by Aritra Roy Gosthipaty and Ayush Thakur') demo.launch()