import numpy as np
import tensorflow as tf
import gradio as gr
from huggingface_hub import from_pretrained_keras
import cv2
img_size = 28
model = from_pretrained_keras("keras-io/keras-reptile")
examples = examples = [
['./example0.JPG'],
['./example1.JPG']
]
def inference(original_image):
image = tf.keras.utils.img_to_array(original_image)
image = image.astype("float32") / 255.0
image = image[:,:,0]
image = np.reshape(image, (28, 28, 1))
output = model.predict(image)
return output
'''
def read_image(image):
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
image = tf.image.resize(image,(28,28,1))
return image
def infer(model, image):
predictions = model.predict(image)
def display_result(input_image):
image = read_image(input_image)
prediction_label = infer(model=model, image=image)
return prediction_label
input = gr.inputs.Image()
examples = [["./example0.JPG"], ["./example1.JPG"]]
title = "Few shot learning"
description = "Upload an image or select from examples to classify fashion items."
'''
interface = gr.Interface(
fn = inference,
title = "Few shot learning with Reptile",
description = "Keras Implementation of Reptile",
inputs = gr.inputs.Image(shape=(28, 28)),
outputs = "text",
examples = examples,
article = "Author: Animesh Maheshwari. Based on the keras example from \n Model Link: https://huggingface.co/keras-io/keras-reptile",
).launch(enable_queue=True, debug = True)