import numpy as np import tensorflow as tf import gradio as gr from huggingface_hub import from_pretrained_keras import cv2 img_size = 28 model = from_pretrained_keras("keras-io/keras-reptile") examples = examples = [ ['./example0.JPG'], ['./example1.JPG'] ] def inference(original_image): image = tf.keras.utils.img_to_array(original_image) image = image.astype("float32") / 255.0 image = image[:,:,0] image = np.reshape(image, (28, 28, 1)) output = model.predict(image) return output ''' def read_image(image): image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) image = tf.image.resize(image,(28,28,1)) return image def infer(model, image): predictions = model.predict(image) def display_result(input_image): image = read_image(input_image) prediction_label = infer(model=model, image=image) return prediction_label input = gr.inputs.Image() examples = [["./example0.JPG"], ["./example1.JPG"]] title = "Few shot learning" description = "Upload an image or select from examples to classify fashion items." ''' interface = gr.Interface( fn = inference, title = "Few shot learning with Reptile", description = "Keras Implementation of Reptile", inputs = gr.inputs.Image(shape=(28, 28)), outputs = "text", examples = examples, article = "Author: Animesh Maheshwari. Based on the keras example from \n Model Link: https://huggingface.co/keras-io/keras-reptile", ).launch(enable_queue=True, debug = True)