from huggingface_hub import from_pretrained_keras from keras_cv import models import gradio as gr # prepare model resolution = 512 sd_dreambooth_model = models.StableDiffusion( img_width=resolution, img_height=resolution, jit_compile=True, ) db_diffusion_model = from_pretrained_keras("merve/dreambooth_diffusion_model") sd_dreambooth_model._diffusion_model = db_diffusion_model # generate images def infer(prompt): generated_images = sd_dreambooth_model.text_to_image( prompt, batch_size=9 ) return generated_images output = gr.Gallery(label="Outputs").style(grid=(3,3)) # customize interface title = "Dreambooth Demo on Dog Images" description = "This is a dreambooth model fine-tuned on dog images. To try it, input the concept with {sks dog}." gr.Interface(infer, inputs=["text"], outputs=[output]).launch()