from huggingface_hub import from_pretrained_keras from keras_cv import models import gradio as gr import tensorflow as tf tf.keras.mixed_precision.set_global_policy("mixed_float16") # load keras model resolution = 512 dreambooth_model = models.StableDiffusion( img_width=resolution, img_height=resolution, jit_compile=True, ) loaded_diffusion_model = from_pretrained_keras("keras-dreambooth/dreambooth_diffusion_hokusai") dreambooth_model._diffusion_model = loaded_diffusion_model # generate images def inference(prompt, negative_prompt, num_imgs_to_gen, num_steps, guidance_scale): generated_images = dreambooth_model.text_to_image( prompt, negative_prompt=negative_prompt, batch_size=num_imgs_to_gen, num_steps=num_steps, unconditional_guidance_scale=guidance_scale, ) return generated_images # pass function, input type for prompt, the output for multiple images gr.Interface( inference, [ gr.Textbox(label="Positive Prompt", value="a painting image in hks## style"), gr.Textbox(label="Negative Prompt", value="bad anatomy, soft blurry"), gr.Slider(label='Number of gen image', minimum=1, maximum=4, value=2, step=1), gr.Slider(label="Inference Steps",value=100), gr.Number(label='Guidance scale', value=7.5), ], [ gr.Gallery(show_label=False), ], title="Keras Dreambooth - Hokusai artist 🏞", description = "This model has been fine-tuned to learn the concept of Hokusai artist. To use this demo, you should have {hks## style} in the input", examples = [["a painting image of a fishing village under a cherry blossom forest at sunset in hks## style, ultra realistic, 4k, 8k", "bad anatomy, soft blurry", 4, 100, 15], ["a beautiful and highly detailed oil painting of a lost valley in the mountains in hks## style, running river, intricate details, 8k, sharp focus, hyper realism", "(bad anatomy), (blurry), grain", 4, 100, 15]], cache_examples=True ).queue().launch(debug=True, share=True)