Spaces:
Sleeping
Sleeping
File size: 6,050 Bytes
3860419 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
"""
This module provides functionality to run benchmarks on different folders within
the 'benchmark' directory, wait for their completion, and generate a report.
"""
# list all folders in benchmark folder
# for each folder, run the benchmark
import contextlib
import json
import os
import subprocess
from datetime import datetime
from itertools import islice
from pathlib import Path
from typing import Iterable, Union
from tabulate import tabulate
from typer import run
def main(
n_benchmarks: Union[int, None] = None,
):
"""
Main function that runs benchmarks on folders within the 'benchmark' directory.
Parameters
----------
n_benchmarks : Union[int, None], optional
The number of benchmarks to run. If None, all benchmarks are run.
"""
path = Path("benchmark")
folders: Iterable[Path] = path.iterdir()
if n_benchmarks:
folders = islice(folders, n_benchmarks)
benchmarks = []
results = []
for bench_folder in folders:
if os.path.isdir(bench_folder):
print(f"Running benchmark for {bench_folder}")
log_path = bench_folder / "log.txt"
log_file = open(log_path, "w")
process = subprocess.Popen(
[
"python",
"-u", # Unbuffered output
"-m",
"gpt_engineer.cli.main",
bench_folder,
"--steps",
"benchmark",
],
stdout=log_file,
stderr=log_file,
bufsize=0,
)
benchmarks.append(bench_folder)
results.append((process, log_file))
print("You can stream the log file by running:")
print(f"tail -f {log_path}")
print()
for bench_folder, (process, file) in zip(benchmarks, results):
process.wait()
file.close()
print("process", bench_folder.name, "finished with code", process.returncode)
print("Running it. Original benchmark prompt:")
print()
with open(bench_folder / "prompt") as f:
print(f.read())
print()
with contextlib.suppress(KeyboardInterrupt):
subprocess.run(
[
"python",
"-m",
"gpt_engineer.cli.main",
bench_folder,
"--steps",
"evaluate",
],
)
generate_report(benchmarks, path)
def generate_report(benchmarks, benchmark_path):
"""
Generates a report of the benchmark results and optionally appends it to a markdown file.
Parameters
----------
benchmarks : list
A list of benchmark folder paths that have been processed.
benchmark_path : Path
The path to the benchmark directory.
"""
headers = ["Benchmark", "Ran", "Works", "Perfect", "Notes"]
rows = []
for bench_folder in benchmarks:
memory = bench_folder / ".gpteng" / "memory"
with open(memory / "review") as f:
review = json.loads(f.read())
rows.append(
[
bench_folder.name,
to_emoji(review.get("ran", None)),
to_emoji(review.get("works", None)),
to_emoji(review.get("perfect", None)),
review.get("comments", None),
]
)
table: str = tabulate(rows, headers, tablefmt="pipe")
print("\nBenchmark report:\n")
print(table)
print()
append_to_results = ask_yes_no("Append report to the results file?")
if append_to_results:
results_path = benchmark_path / "RESULTS.md"
current_date = datetime.now().strftime("%Y-%m-%d")
insert_markdown_section(results_path, current_date, table, 2)
def to_emoji(value: bool) -> str:
"""
Converts a boolean value to its corresponding emoji representation.
Parameters
----------
value : bool
The boolean value to convert.
Returns
-------
str
An emoji string representing the boolean value.
"""
return "\U00002705" if value else "\U0000274C"
def insert_markdown_section(file_path, section_title, section_text, level):
"""
Inserts a new section into a markdown file at the specified level.
Parameters
----------
file_path : Path
The path to the markdown file.
section_title : str
The title of the section to insert.
section_text : str
The text content of the section to insert.
level : int
The header level of the section.
"""
with open(file_path, "r") as file:
lines = file.readlines()
header_prefix = "#" * level
new_section = f"{header_prefix} {section_title}\n\n{section_text}\n\n"
# Find the first section with the specified level
line_number = -1
for i, line in enumerate(lines):
if line.startswith(header_prefix):
line_number = i
break
if line_number != -1:
lines.insert(line_number, new_section)
else:
print(
f"Markdown file was of unexpected format. No section of level {level} found. "
"Did not write results."
)
return
# Write the file
with open(file_path, "w") as file:
file.writelines(lines)
def ask_yes_no(question: str) -> bool:
"""
Asks a yes/no question and returns the response as a boolean value.
Parameters
----------
question : str
The yes/no question to ask.
Returns
-------
bool
True if the answer is 'yes', False if 'no'.
"""
while True:
response = input(question + " (y/n): ").lower().strip()
if response == "y":
return True
elif response == "n":
return False
else:
print("Please enter either 'y' or 'n'.")
if __name__ == "__main__":
run(main)
|