File size: 10,922 Bytes
14dc68f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
from flask import Flask, render_template, request, jsonify, send_from_directory
import openai
import os
import json
import threading
from babyagi import get_skills, execute_skill, execute_task_list, api_keys, LOAD_SKILLS
from ongoing_tasks import ongoing_tasks

app = Flask(__name__, static_folder='public/static')
openai.api_key = os.getenv('OPENAI_API_KEY')


@app.route('/')
def hello_world():

  return render_template('index.html')


FOREVER_CACHE_FILE = "forever_cache.ndjson"
OVERALL_SUMMARY_FILE = "overall_summary.ndjson"


@app.route('/get-all-messages', methods=["GET"])
def get_all_messages():
  try:
    messages = []
    with open("forever_cache.ndjson", "r") as file:
      for line in file:
        messages.append(json.loads(line))

    return jsonify(messages)

  except Exception as e:
    return jsonify({"error": str(e)}), 500


def get_latest_summary():
  with open(OVERALL_SUMMARY_FILE, 'r') as file:
    lines = file.readlines()
  if lines:
    return json.loads(lines[-1])["summary"]  # Return the latest summary
  return ""


def summarize_text(text):
  system_message = (
    "Your task is to generate a concise summary for the provided conversation, this will be fed to a separate AI call as context to generate responses for future user queries."
    " The conversation contains various messages that have been exchanged between participants."
    " Please ensure your summary captures the main points and context of the conversation without being too verbose."
    " The summary should be limited to a maximum of 500 tokens."
    " Here's the conversation you need to summarize:")

  completion = openai.ChatCompletion.create(model="gpt-3.5-turbo-16k",
                                            messages=[{
                                              "role": "system",
                                              "content": system_message
                                            }, {
                                              "role": "user",
                                              "content": text
                                            }])

  # Extracting the content from the assistant's message
  return completion.choices[0]['message']['content'].strip()


def combine_summaries(overall, latest):
  system_message = (
    "Your task is to generate a concise summary for the provided conversation, this will be fed to a separate AI call as context to generate responses for future user queries."
    "You will do this by combining two given summaries into one cohesive summary."
    " Make sure to retain the key points from both summaries and create a concise, unified summary."
    " The combined summary should not exceed 500 tokens."
    " Here are the summaries you need to combine:")

  completion = openai.ChatCompletion.create(
    model="gpt-3.5-turbo-16k",
    messages=[{
      "role": "system",
      "content": system_message
    }, {
      "role":
      "user",
      "content":
      f"Overall summary: {overall}\nLatest summary: {latest}"
    }])

  # Extracting the content from the assistant's message
  return completion.choices[0]['message']['content'].strip()



def openai_function_call(user_message):
  global ongoing_tasks
  global global_skill_registry
  global_skill_registry = LOAD_SKILLS
  print("Returning GLOBAL SKILL REGISTRY")
  print(global_skill_registry)
  
  # Append the new user message to the forever_cache file
  user_entry = {"role": "user", "content": user_message}
  append_to_ndjson(FOREVER_CACHE_FILE, user_entry)

  # Retrieve the last 20 stored messages
  with open(FOREVER_CACHE_FILE, "r") as file:
    lines = file.readlines()

  last_20_messages = [json.loads(line) for line in lines][-20:]

  # Always update the summary in a separate thread
  threading.Thread(target=update_summary, args=(last_20_messages, )).start()

  overall_summary = get_latest_summary()
  print("LOAD_SKILLS")
  print(global_skill_registry)
  system_message = (
    f"You are a fun happy and quirky AI chat assistant that uses Gen Z language and lots of emojis named BabyAGI with capabilities beyond chat. For every user message, you quickly analyze whether this is a request that you can simply respond via ChatCompletion, whether you need to use one of the skills provided, or whether you should create a task list and chain multiple skills together. You will always provide a message_to_user. If path is Skill or TaskList, always generate an objective. If path is Skill, ALWAYS include skill_used from one of the available skills. ###Here are your available skills: {global_skill_registry}.###For context, here is the overall summary of the chat: {overall_summary}."
  )

  completion = openai.ChatCompletion.create(
    model="gpt-3.5-turbo-16k",
    messages=[
      {"role": "system","content": system_message},
      *last_20_messages,
      {"role": "user","content": user_message},
    ],
    functions=[{
      "name": "determine_response_type",
      "description":
      "Determine whether to respond via ChatCompletion, use a skill, or create a task list. Always provide a message_to_user.",
      "parameters": {
        "type": "object",
        "properties": {
          "message_to_user": {
            "type":
            "string",
            "description":
            "A message for the user, indicating the AI's action or providing the direct chat response. ALWAYS REQUIRED. Do not use line breaks."
          },
          "path": {
            "type":
            "string",
            "enum": ["ChatCompletion", "Skill", "TaskList"],  # Restrict the values to these three options
            "description":
            "The type of response – either 'ChatCompletion', 'Skill', or 'TaskList'"
          },
          "skill_used": {
            "type":
            "string",
            "description":
            f"If path is 'Skill', indicates which skill to use. If path is 'Skill', ALWAYS use skill_used. Must be one of these: {global_skill_registry}"
          },
          "objective": {
            "type":
            "string",
            "description":
            "If path is 'Skill' or 'TaskList', describes the main task or objective. Always include if path is 'Skill' or 'TaskList'."
          }
        },
        "required": ["path", "message_to_user", "objective", "skill_used"]
      }
    }],
    function_call={"name": "determine_response_type"})

  # Extract AI's structured response from function call
  response_data = completion.choices[0]['message']['function_call'][
    'arguments']
  if isinstance(response_data, str):
    response_data = json.loads(response_data)
  print("RESPONSE DATA:")
  print(response_data)
  path = response_data.get("path")
  skill_used = response_data.get("skill_used")
  objective = response_data.get("objective")
  task_id = generate_task_id()
  response_data["taskId"] = task_id
  if path == "Skill":
      ongoing_tasks[task_id] = {
          'status': 'ongoing',
          'description': objective,
          'skill_used': skill_used
      }
      threading.Thread(target=execute_skill, args=(skill_used, objective, task_id)).start()
      update_ongoing_tasks_file()
  elif path == "TaskList":
      ongoing_tasks[task_id] = {
          'status': 'ongoing',
          'description': objective,
          'skill_used': 'Multiple'
      }
      threading.Thread(target=execute_task_list, args=(objective, api_keys, task_id)).start()
      update_ongoing_tasks_file()

  return response_data


def generate_task_id():
  """Generates a unique task ID"""
  return f"{str(len(ongoing_tasks) + 1)}"


def update_summary(messages):
  # Combine messages to form text and summarize
  messages_text = " ".join([msg['content'] for msg in messages])
  latest_summary = summarize_text(messages_text)

  # Update overall summary
  overall = get_latest_summary()
  combined_summary = combine_summaries(overall, latest_summary)
  append_to_ndjson(OVERALL_SUMMARY_FILE, {"summary": combined_summary})


@app.route('/determine-response', methods=["POST"])
def determine_response():
  try:
    # Ensure that the request contains JSON data
    if not request.is_json:
      return jsonify({"error": "Expected JSON data"}), 400

    user_message = request.json.get("user_message")

    # Check if user_message is provided
    if not user_message:
      return jsonify({"error": "user_message field is required"}), 400

    response_data = openai_function_call(user_message)

    data = {
      "message": response_data['message_to_user'],
      "skill_used": response_data.get('skill_used', None),
      "objective": response_data.get('objective', None),
      "task_list": response_data.get('task_list', []),
      "path": response_data.get('path', []),
      "task_id": response_data.get('taskId')
    }

    # Storing AI's response to NDJSON file
    ai_entry = {
      "role": "assistant",
      "content": response_data['message_to_user']
    }
    append_to_ndjson("forever_cache.ndjson", ai_entry)

    print("END OF DETERMINE-RESPONSE. PRINTING 'DATA'")
    print(data)
    return jsonify(data)

  except Exception as e:
    print(f"Exception occurred: {str(e)}")
    return jsonify({"error": str(e)}), 500


def append_to_ndjson(filename, data):
  try:
    print(f"Appending to {filename} with data: {data}")
    with open(filename, 'a') as file:
      file.write(json.dumps(data) + '\n')
  except Exception as e:
    print(f"Error in append_to_ndjson: {str(e)}")



@app.route('/check-task-status/<task_id>', methods=["GET"])
def check_task_status(task_id):
    global ongoing_tasks
    update_ongoing_tasks_file()
    print("CHECK_TASK_STATUS")
    print(task_id)
    task = ongoing_tasks.get(task_id)

    # First check if task is None
    if not task:
        return jsonify({"error": f"No task with ID {task_id} found."}), 404

    # Now, it's safe to access attributes of task
    print(task.get("status"))
    return jsonify({"status": task.get("status")})


@app.route('/fetch-task-output/<task_id>', methods=["GET"])
def fetch_task_output(task_id):
  print("FETCH_TASK_STATUS")
  print(task_id)
  task = ongoing_tasks.get(task_id)
  if not task:
    return jsonify({"error": f"No task with ID {task_id} found."}), 404
  return jsonify({"output": task.get("output")})


def update_ongoing_tasks_file():
    with open("ongoing_tasks.py", "w") as file:
        file.write(f"ongoing_tasks = {ongoing_tasks}\n")

@app.route('/get-all-tasks', methods=['GET'])
def get_all_tasks():
    tasks = []
    for task_id, task_data in ongoing_tasks.items():
        task = {
            'task_id': task_id,
            'status': task_data.get('status', 'unknown'),
            'description': task_data.get('description', 'N/A'),
            'skill_used': task_data.get('skill_used', 'N/A'),
            'output': task_data.get('output', 'N/A')
        }
        tasks.append(task)
    return jsonify(tasks)



if __name__ == "__main__":
  app.run(host='0.0.0.0', port=8080)