""" Based upon ImageCaptionLoader in LangChain version: langchain/document_loaders/image_captions.py But accepts preloaded model to avoid slowness in use and CUDA forking issues Loader that loads image captions By default, the loader utilizes the pre-trained BLIP image captioning model. https://huggingface.co/Salesforce/blip-image-captioning-base """ from typing import List, Union, Any, Tuple import requests from langchain.docstore.document import Document from langchain.document_loaders import ImageCaptionLoader from utils import get_device, NullContext, clear_torch_cache from importlib.metadata import distribution, PackageNotFoundError try: assert distribution('bitsandbytes') is not None have_bitsandbytes = True except (PackageNotFoundError, AssertionError): have_bitsandbytes = False class H2OImageCaptionLoader(ImageCaptionLoader): """Loader that loads the captions of an image""" def __init__(self, path_images: Union[str, List[str]] = None, blip_processor: str = None, blip_model: str = None, caption_gpu=True, load_in_8bit=True, # True doesn't seem to work, even though https://huggingface.co/Salesforce/blip2-flan-t5-xxl#in-8-bit-precision-int8 load_half=False, load_gptq='', load_exllama=False, use_safetensors=False, revision=None, min_new_tokens=20, max_tokens=50): if blip_model is None or blip_model is None: blip_processor = "Salesforce/blip-image-captioning-base" blip_model = "Salesforce/blip-image-captioning-base" super().__init__(path_images, blip_processor, blip_model) self.blip_processor = blip_processor self.blip_model = blip_model self.processor = None self.model = None self.caption_gpu = caption_gpu self.context_class = NullContext self.device = 'cpu' self.load_in_8bit = load_in_8bit and have_bitsandbytes # only for blip2 self.load_half = load_half self.load_gptq = load_gptq self.load_exllama = load_exllama self.use_safetensors = use_safetensors self.revision = revision self.gpu_id = 'auto' # default prompt self.prompt = "image of" self.min_new_tokens = min_new_tokens self.max_tokens = max_tokens def set_context(self): if get_device() == 'cuda' and self.caption_gpu: import torch n_gpus = torch.cuda.device_count() if torch.cuda.is_available else 0 if n_gpus > 0: self.context_class = torch.device self.device = 'cuda' else: self.device = 'cpu' else: self.device = 'cpu' def load_model(self): try: import transformers except ImportError: raise ValueError( "`transformers` package not found, please install with " "`pip install transformers`." ) self.set_context() if self.model: if not self.load_in_8bit and self.model.device != self.device: self.model.to(self.device) return self if self.caption_gpu: if self.gpu_id == 'auto': # blip2 has issues with multi-GPU. Error says need to somehow set language model in device map # device_map = 'auto' device_map = {"": 0} else: if self.device == 'cuda': device_map = {"": self.gpu_id} else: device_map = {"": 'cpu'} else: device_map = {"": 'cpu'} import torch with torch.no_grad(): with self.context_class(self.device): context_class_cast = NullContext if self.device == 'cpu' else torch.autocast with context_class_cast(self.device): if 'blip2' in self.blip_processor.lower(): from transformers import Blip2Processor, Blip2ForConditionalGeneration if self.load_half and not self.load_in_8bit: self.processor = Blip2Processor.from_pretrained(self.blip_processor, device_map=device_map).half() self.model = Blip2ForConditionalGeneration.from_pretrained(self.blip_model, device_map=device_map).half() else: self.processor = Blip2Processor.from_pretrained(self.blip_processor, load_in_8bit=self.load_in_8bit, device_map=device_map, ) self.model = Blip2ForConditionalGeneration.from_pretrained(self.blip_model, load_in_8bit=self.load_in_8bit, device_map=device_map) else: from transformers import BlipForConditionalGeneration, BlipProcessor self.load_half = False # not supported if self.caption_gpu: if device_map == 'auto': # Blip doesn't support device_map='auto' if self.device == 'cuda': if self.gpu_id == 'auto': device_map = {"": 0} else: device_map = {"": self.gpu_id} else: device_map = {"": 'cpu'} else: device_map = {"": 'cpu'} self.processor = BlipProcessor.from_pretrained(self.blip_processor, device_map=device_map) self.model = BlipForConditionalGeneration.from_pretrained(self.blip_model, device_map=device_map) return self def set_image_paths(self, path_images: Union[str, List[str]]): """ Load from a list of image files """ if isinstance(path_images, str): self.image_paths = [path_images] else: self.image_paths = path_images def load(self, prompt=None) -> List[Document]: if self.processor is None or self.model is None: self.load_model() results = [] for path_image in self.image_paths: caption, metadata = self._get_captions_and_metadata( model=self.model, processor=self.processor, path_image=path_image, prompt=prompt, ) doc = Document(page_content=caption, metadata=metadata) results.append(doc) return results def unload_model(self): if hasattr(self, 'model') and hasattr(self.model, 'cpu'): self.model.cpu() clear_torch_cache() def _get_captions_and_metadata( self, model: Any, processor: Any, path_image: str, prompt=None) -> Tuple[str, dict]: """ Helper function for getting the captions and metadata of an image """ if prompt is None: prompt = self.prompt try: from PIL import Image except ImportError: raise ValueError( "`PIL` package not found, please install with `pip install pillow`" ) try: if path_image.startswith("http://") or path_image.startswith("https://"): image = Image.open(requests.get(path_image, stream=True).raw).convert( "RGB" ) else: image = Image.open(path_image).convert("RGB") except Exception: raise ValueError(f"Could not get image data for {path_image}") import torch with torch.no_grad(): with self.context_class(self.device): context_class_cast = NullContext if self.device == 'cpu' else torch.autocast with context_class_cast(self.device): if self.load_half: # FIXME: RuntimeError: "slow_conv2d_cpu" not implemented for 'Half' inputs = processor(image, prompt, return_tensors="pt") # .half() else: inputs = processor(image, prompt, return_tensors="pt") min_length = len(prompt) // 4 + self.min_new_tokens self.max_tokens = max(self.max_tokens, min_length) output = model.generate(**inputs, min_length=min_length, max_length=self.max_tokens) caption: str = processor.decode(output[0], skip_special_tokens=True) prompti = caption.find(prompt) if prompti >= 0: caption = caption[prompti + len(prompt):] metadata: dict = {"image_path": path_image} return caption, metadata