import os os.system('pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu') os.system('sudo apt-get install tesseract-ocr') os.system('pip install -q pytesseract') os.environ["TOKENIZERS_PARALLELISM"] = "false" import gradio as gr import torch from datasets import load_dataset, ClassLabel from transformers import LayoutLMv3ForTokenClassification, LayoutLMv3Processor,LayoutLMv3FeatureExtractor import pytesseract import numpy as np from PIL import ImageDraw, ImageFont examples = [['example1.png'],['example2.png'],['example3.png']] dataset = load_dataset("nielsr/cord-layoutlmv3")['train'] def get_label_list(labels): unique_labels = set() for label in labels: unique_labels = unique_labels | set(label) label_list = list(unique_labels) label_list.sort() return label_list def convert_l2n_n2l(dataset): features = dataset.features label_column_name = "ner_tags" label_list = features[label_column_name].feature.names if isinstance(features[label_column_name].feature, ClassLabel): id2label = {k:v for k,v in enumerate(label_list)} label2id = {v:k for k,v in enumerate(label_list)} else: label_list = get_label_list(dataset[label_column_name]) id2label = {k:v for k,v in enumerate(label_list)} label2id = {v:k for k,v in enumerate(label_list)} return label_list, id2label, label2id, len(label_list) def label_colour(label): label2color ={'MENU.PRICE':'blue','MENU.NM':'red','other':None,'MENU.NUM':'orange','TOTAL.TOTAL_PRICE':'green'} if label in label2color: colour = label2color.get(label) else: colour = None return colour def iob_to_label(label): label = label[2:] if not label: return 'other' return label def convert_results(words,tags): ents = set() completeword = "" for word, tag in zip(words, tags): if tag != "O": ent_position, ent_type = tag.split("-") if ent_position == "S": ents.add((word,ent_type)) else: if ent_position == "B": completeword = completeword+ " "+ word elif ent_position == "I": completeword= completeword+ " " + word elif ent_position == "E": completeword =completeword+" " + word ents.add((completeword,ent_type)) completeword= "" return ents def unnormalize_box(bbox, width, height): return [ width * (bbox[0] / 1000), height * (bbox[1] / 1000), width * (bbox[2] / 1000), height * (bbox[3] / 1000), ] def predict(image): model = LayoutLMv3ForTokenClassification.from_pretrained("keldrenloy/LayoutLMv3FineTunedwithCORDandSGReceipts") #add your model directory here processor = LayoutLMv3Processor.from_pretrained("microsoft/layoutlmv3-base") label_list,id2label,label2id, num_labels = convert_l2n_n2l(dataset) width, height = image.size encoding_inputs = processor(image,return_offsets_mapping=True, return_tensors="pt",truncation = True) offset_mapping = encoding_inputs.pop('offset_mapping') with torch.no_grad(): outputs = model(**encoding_inputs) predictions = outputs.logits.argmax(-1).squeeze().tolist() token_boxes = encoding_inputs.bbox.squeeze().tolist() is_subword = np.array(offset_mapping.squeeze().tolist())[:,0] != 0 true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]] true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]] draw = ImageDraw.Draw(image) font = ImageFont.load_default() for prediction, box in zip(true_predictions, true_boxes): predicted_label = iob_to_label(prediction) draw.rectangle(box, outline=label_colour(predicted_label)) draw.text((box[0]+10, box[1]-10), text=predicted_label, fill=label_colour(predicted_label), font=font) words = text_extraction(image) extracted_words = convert_results(words,true_predictions) menu_list = [] price_list = [] for idx,item in enumerate(extracted_words): if item[1] == 'MENU.NM': menu_list.append(f"item {idx}.{item[0]}") if item[1] == 'MENU.PRICE': price_list.append(f"item {idx}. ${item[0]}") return image,menu_list,price_list def text_extraction(image): feature_extractor = LayoutLMv3FeatureExtractor() encoding = feature_extractor(image, return_tensors="pt") return encoding['words'][0] css = """.output_image, .input_image {height: 600px !important}""" demo = gr.Interface(fn = predict, inputs = gr.inputs.Image(type="pil"), outputs = [gr.outputs.Image(type="pil", label="annotated image"),'text','text'], css = css, examples = examples, allow_flagging=True, flagging_options=["incorrect", "correct"], flagging_callback = gr.CSVLogger(), flagging_dir = "flagged", analytics_enabled = True, enable_queue=True ) demo.launch(debug=False)