File size: 6,767 Bytes
ceddb8d
e7acccd
 
8168e13
 
 
 
e7acccd
 
 
 
f2280ce
8168e13
 
e7acccd
8168e13
d3188fd
8168e13
aa91e1a
d3188fd
 
e7acccd
d3188fd
aa91e1a
 
 
 
8168e13
 
 
 
 
 
 
 
 
 
e7acccd
8168e13
d3188fd
 
8168e13
 
 
 
d3188fd
 
 
8168e13
e7acccd
 
 
 
 
 
 
8168e13
 
 
d3188fd
8168e13
d3188fd
 
 
8168e13
d3188fd
ceddb8d
 
d3188fd
 
 
ceddb8d
 
 
 
 
 
 
 
 
36ab4ca
ceddb8d
 
 
36ab4ca
e7acccd
d3188fd
ceddb8d
 
36ab4ca
 
 
 
 
 
 
 
 
 
e7acccd
 
36ab4ca
 
 
e7acccd
 
36ab4ca
 
 
 
 
 
 
 
ceddb8d
eb7aa6c
 
 
aa91e1a
e7acccd
 
aa91e1a
ceddb8d
36ab4ca
ceddb8d
 
36ab4ca
3fa05ab
e7acccd
 
 
 
ceddb8d
36ab4ca
e7acccd
 
 
ceddb8d
aa91e1a
 
36ab4ca
 
 
aa91e1a
 
e7acccd
aa91e1a
 
d3188fd
36ab4ca
 
aa91e1a
e7acccd
 
 
 
 
 
aa91e1a
 
 
 
 
 
 
 
36ab4ca
ceddb8d
0b1158e
 
36ab4ca
0b1158e
 
36ab4ca
fb712ac
 
aa91e1a
fb712ac
 
 
ceddb8d
 
 
c40ae1d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import gradio as gr
from Scripts.image_processing import apply_blur, clip_image, wrap_image
from Scripts.detection import yolov10_inference, calculate_detection_metrics
from PIL import Image
import numpy as np
import torchvision.transforms as transforms
import torch
from Scripts.utils import *
from Scripts.utils import modulo
from Scripts.utils_spud import *  # Asegúrate de que las funciones necesarias estén importadas aquí


import cv2
import matplotlib.pyplot as plt
import packaging

IMAGE_SIZE = 640  # Asignar el valor constante para image_size

def process_image(image, model_id, sat_factor, selected_method):
    conf_threshold = 0.85
    correction = 1.0
    kernel_size = 7
    
    DO = 1
    t = 0.7
    vertical = True
    
    original_image = np.array(image)
    original_image = original_image - original_image.min()
    original_image = original_image / original_image.max()
    original_image = original_image * 255.0
    original_image = original_image.astype(np.uint8)

    scaling = 1.0
    original_image = cv2.resize(original_image, (0, 0), fx=scaling, fy=scaling)

    blurred_image = apply_blur(original_image / 255.0, kernel_size)
    clipped_image = clip_image(blurred_image, correction, sat_factor)

    img_tensor = torch.tensor(blurred_image, dtype=torch.float32).permute(2, 0, 1).unsqueeze(0)
    img_tensor = modulo(img_tensor * sat_factor, L=1.0)

    wrapped_image = img_tensor.squeeze(0).permute(1, 2, 0).numpy()
    wrapped_image = (wrapped_image*255).astype(np.uint8)

    original_annotated, original_detections = yolov10_inference(original_image, model_id, IMAGE_SIZE, conf_threshold)
    clipped_annotated, clipped_detections = yolov10_inference((clipped_image*255.0).astype(np.uint8), "yolov10n", IMAGE_SIZE, conf_threshold)
    wrapped_annotated, wrapped_detections = yolov10_inference(wrapped_image, model_id, IMAGE_SIZE, conf_threshold)

    if selected_method == "SPUD":
        # Uso de la función personalizada de SPUD
        recon_image = recons_spud(img_tensor, threshold=0.1, mx=1.0)
    else:
        # Método por defecto AHFD
        recon_image = recons(img_tensor, DO=DO, L=1.0, vertical=vertical, t=t)

    recon_image_pil = transforms.ToPILImage()(recon_image.squeeze(0))
    recon_image_np = np.array(recon_image_pil).astype(np.uint8)

    recon_annotated, recon_detections = yolov10_inference(recon_image_np, model_id, IMAGE_SIZE, conf_threshold)

    metrics_clip = calculate_detection_metrics(original_detections, clipped_detections)
    metrics_wrap = calculate_detection_metrics(original_detections, wrapped_detections)
    metrics_recons = calculate_detection_metrics(original_detections, recon_detections)

    return original_annotated, clipped_annotated, wrapped_annotated, recon_annotated, metrics_clip, metrics_wrap, metrics_recons

def app():
    image_scaler = 0.55  
    image_width = int(600 * image_scaler)  
    image_height = int(200 * image_scaler)

    with gr.Blocks(css=f"""
    .fixed-size-image img {{
        width: {image_width}px;
        height: {image_height}px;
        object-fit: cover;
    }}
    .gr-row {{
        display: flex;
        justify-content: center;
        align-items: center;
    }}
    .gr-column {{
        display: flex;
        flex-direction: row;
        align-items: center;
        padding: 0 !important;
        margin: 0 !important;
    }}
    #centered-title {{
        text-align: center;
    }}
    #centered-text {{
        text-align: center;
        margin-bottom: 10px;
    }}
    .custom-button {{
        display: inline-block;
        padding: 5px 10px;
        font-size: 12px;
        font-weight: bold;
        color: white;
        border-radius: 5px;
        margin-right: 5px;  /* Reducir el margen entre botones */
        margin-bottom: 0px;
        text-decoration: none;
        text-align: center;
    }}
    .btn-grey {{
        background-color: #4b4b4b;
    }}
    .btn-red {{
        background-color: #e94e42;
    }}
    .btn-blue {{
        background-color: #007bff;
    }}
    .gr-examples img {{
        width: 200px;
        height: 200px;
    }}
    """) as demo:
        gr.Markdown("## Modulo Imaging for Computer Vision", elem_id="centered-title")

        with gr.Row():
            with gr.Column():
                gr.Markdown("### High Dynamic Range Modulo Imaging for Robust Object Detection in Autonomous Driving", elem_id="centered-text")
                with gr.Row():
                    gr.HTML('<a href="https://openreview.net/pdf?id=2GqZFx2I7s" target="_blank" class="custom-button btn-grey">Article</a>')
                    gr.HTML('<a href="https://github.com/kebincontreras/Modulo_images.git" target="_blank" class="custom-button btn-blue">GitHub</a>')

            with gr.Column():
                gr.Markdown("### Autoregressive High-Order Finite Difference Modulo Imaging: High-Dynamic Range for Computer Vision Applications", elem_id="centered-text")
                with gr.Row():
                    gr.HTML('<a href="https://cvlai.net/aim/2024/" target="_blank" class="custom-button btn-red">Article</a>')
                    gr.HTML('<a href="https://github.com/bemc22/AHFD" target="_blank" class="custom-button btn-blue">GitHub</a>')

        image = gr.Image(type="pil", label="Upload Image", interactive=True)

        model_id = gr.Dropdown(label="Model", choices=["yolov10n", "yolov10s", "yolov10m", "yolov10b", "yolov10l", "yolov10x"], value="yolov10x")
        sat_factor = gr.Slider(label="Saturation Factor", minimum=1.0, maximum=5.0, step=0.1, value=2.0)

        selected_method = gr.Radio(
            label="Select Method",
            choices=["AHFD","SPUD"],
            value="SPUD"
        )
        
        process_button = gr.Button("Process Image")

        examples = [
            ["Add_ons/imagen1.png"],
            ["Add_ons/imagen2.png"],
            ["Add_ons/imagen3.jpg"],
            ["Add_ons/imagen4.jpg"],
            ["Add_ons/imagen5.jpg"],
            ["Add_ons/imagen6.png"]
        ]

        gr.Examples(
            examples=examples,
            inputs=[image],
            label="Choose an Example Image"
        )

        with gr.Row():
            with gr.Column():
                output_original = gr.Image(label="Ground Truth")
                output_wrap = gr.Image(label="Modulo-ADC")
            with gr.Column():
                output_clip = gr.Image(label="CCD-Saturated")
                output_recons = gr.Image(label="Modulo-ADC + Recovery")

        process_button.click(
            fn=process_image,
            inputs=[image, model_id, sat_factor, selected_method],
            outputs=[output_original, output_clip, output_wrap, output_recons]
        )

    return demo

if __name__ == "__main__":
    app().launch()