import tensorflow as tf from tensorflow.keras import layers, models # type: ignore def encoder_block(inputs, filters): x = layers.Conv3D(filters=filters, kernel_size=(3, 3, 4), padding="same", activation="relu")(inputs) x = layers.BatchNormalization()(x) return x def convlstm_block(inputs, filters): # Reshape to (timesteps, height, width, channels) for ConvLSTM x = layers.Reshape((inputs.shape[1], inputs.shape[2], inputs.shape[3], inputs.shape[4]))(inputs) x = layers.ConvLSTM2D(filters=filters, kernel_size=(3, 3), padding="same", return_sequences=True)(x) x = layers.BatchNormalization()(x) # Reshape back to 3D conv format x = layers.Reshape((inputs.shape[1], inputs.shape[2], inputs.shape[3], filters))(x) return x def decoder_block(inputs, skip_connection, filters): x = layers.Conv3DTranspose(filters=filters, kernel_size=(3, 3, 4), padding="same", activation="relu")(inputs) x = layers.BatchNormalization()(x) skip_resized = layers.Conv3D(filters, (1, 1, 1), padding="same")(skip_connection) x = layers.Concatenate()([x, skip_resized]) x = layers.ConvLSTM2D(filters=filters, kernel_size=(3, 3), padding="same", return_sequences=True)(x) return x def build_unet_convlstm(input_shape=(8, 95, 95, 3)): input_tensor = layers.Input(shape=input_shape) # Encoder with ConvLSTM skip1 = encoder_block(input_tensor, filters=8) skip1 = convlstm_block(skip1, filters=8) # Added ConvLSTM skip2 = encoder_block(skip1, filters=16) skip2 = convlstm_block(skip2, filters=16) # Added ConvLSTM # Bottleneck with ConvLSTM x = layers.Conv3D(filters=32, kernel_size=(3, 3, 3), padding="same", activation="relu")(skip2) x = layers.BatchNormalization()(x) x = convlstm_block(x, filters=32) # Bottleneck ConvLSTM # Decoder x = decoder_block(x, skip2, filters=16) x = decoder_block(x, skip1, filters=8) # Final Output Layer x = layers.Conv3D(filters=1, kernel_size=(1, 1, 1), activation="relu")(x) x = layers.GlobalAveragePooling3D()(x) model = models.Model(inputs=input_tensor, outputs=x) return model import tensorflow as tf from tensorflow.keras import layers, models # type: ignore def RSTNet(input_shape): """ Creates the subnet for extracting TC radial structure features using a five-branch CNN design with 2D convolutions. Parameters: - input_shape: tuple, shape of the input data (e.g., (95, 95, 3)) Returns: - model: tf.keras.Model, the radial structure subnet model """ input_tensor = layers.Input(shape=input_shape) # Divide input data into four quadrants (NW, NE, SW, SE) # Assuming the input shape is (batch_size, height, width, channels) # Quadrant extraction - using slicing to separate quadrants nw_quadrant = input_tensor[:, :input_shape[0]//2, :input_shape[1]//2, :] ne_quadrant = input_tensor[:, :input_shape[0]//2, input_shape[1]//2:, :] sw_quadrant = input_tensor[:, input_shape[0]//2:, :input_shape[1]//2, :] se_quadrant = input_tensor[:, input_shape[0]//2:, input_shape[1]//2:, :] target_height = max(input_shape[0]//2, input_shape[0] - input_shape[0]//2) # 48 target_width = max(input_shape[1]//2, input_shape[1] - input_shape[1]//2) # 48 # Padding the quadrants to match the target size (48, 48) nw_quadrant = layers.ZeroPadding2D(padding=((0, target_height - nw_quadrant.shape[1]), (0, target_width - nw_quadrant.shape[2])))(nw_quadrant) ne_quadrant = layers.ZeroPadding2D(padding=((0, target_height - ne_quadrant.shape[1]), (0, target_width - ne_quadrant.shape[2])))(ne_quadrant) sw_quadrant = layers.ZeroPadding2D(padding=((0, target_height - sw_quadrant.shape[1]), (0, target_width - sw_quadrant.shape[2])))(sw_quadrant) se_quadrant = layers.ZeroPadding2D(padding=((0, target_height - se_quadrant.shape[1]), (0, target_width - se_quadrant.shape[2])))(se_quadrant) print(nw_quadrant.shape) print(ne_quadrant.shape) print(sw_quadrant.shape) print(se_quadrant.shape) # Main branch (processing the entire structure) main_branch = layers.Conv2D(filters=8, kernel_size=(3, 3), padding='same', activation='relu')(input_tensor) y=layers.MaxPool2D()(main_branch) y = layers.ZeroPadding2D(padding=((0, target_height - y.shape[1]), (0, target_width - y.shape[2])))(y) # Side branches (processing the individual quadrants) nw_branch = layers.Conv2D(filters=8, kernel_size=(3, 3), padding='same', activation='relu')(nw_quadrant) ne_branch = layers.Conv2D(filters=8, kernel_size=(3, 3), padding='same', activation='relu')(ne_quadrant) sw_branch = layers.Conv2D(filters=8, kernel_size=(3, 3), padding='same', activation='relu')(sw_quadrant) se_branch = layers.Conv2D(filters=8, kernel_size=(3, 3), padding='same', activation='relu')(se_quadrant) # Apply padding to the side branches to match the dimensions of the main branch # nw_branch = layers.UpSampling2D(size=(2, 2), interpolation='nearest')(nw_branch) # ne_branch = layers.UpSampling2D(size=(2, 2), interpolation='nearest')(ne_branch) # sw_branch = layers.UpSampling2D(size=(2, 2), interpolation='nearest')(sw_branch) # se_branch = layers.UpSampling2D(size=(2, 2), interpolation='nearest')(se_branch) # Fusion operations (concatenate the outputs from the main branch and side branches) fusion = layers.concatenate([y, nw_branch, ne_branch, sw_branch, se_branch], axis=-1) # Additional convolution layer to combine the fused features # x = layers.Conv2D(filters=16, kernel_size=(3, 3), padding='same', activation='relu')(fusion) x=layers.Reshape((1, 48, 48, 40))(fusion) x = layers.ConvLSTM2D(filters=16, kernel_size=(3, 3), padding="same", return_sequences=True)(x) x=layers.Reshape((48, 48, 16))(x) x=layers.MaxPool2D(pool_size=(2, 2))(x) # Final dense layer for further processing nw_branch = layers.Conv2D(filters=16, kernel_size=(3, 3), padding='same', activation='relu')(nw_branch) ne_branch = layers.Conv2D(filters=16, kernel_size=(3, 3), padding='same', activation='relu')(ne_branch) sw_branch = layers.Conv2D(filters=16, kernel_size=(3, 3), padding='same', activation='relu')(sw_branch) se_branch = layers.Conv2D(filters=16, kernel_size=(3, 3), padding='same', activation='relu')(se_branch) nw_branch = layers.MaxPool2D(pool_size=(2, 2))(nw_branch) ne_branch = layers.MaxPool2D(pool_size=(2, 2))(ne_branch) sw_branch = layers.MaxPool2D(pool_size=(2, 2))(sw_branch) se_branch = layers.MaxPool2D(pool_size=(2, 2))(se_branch) fusion = layers.concatenate([x, nw_branch, ne_branch, sw_branch, se_branch], axis=-1) # x = layers.Conv2D(filters=32, kernel_size=(3, 3), padding='same', activation='relu')(fusion) x=layers.Reshape((1, 24, 24, 80))(fusion) x = layers.ConvLSTM2D(filters=32, kernel_size=(3, 3), padding="same", return_sequences=True)(x) x=layers.Reshape((24, 24, 32))(x) x=layers.MaxPool2D(pool_size=(2, 2))(x) nw_branch = layers.Conv2D(filters=32, kernel_size=(3, 3), padding='same', activation='relu')(nw_branch) ne_branch = layers.Conv2D(filters=32, kernel_size=(3, 3), padding='same', activation='relu')(ne_branch) sw_branch = layers.Conv2D(filters=32, kernel_size=(3, 3), padding='same', activation='relu')(sw_branch) se_branch = layers.Conv2D(filters=32, kernel_size=(3, 3), padding='same', activation='relu')(se_branch) nw_branch = layers.MaxPool2D(pool_size=(2, 2))(nw_branch) ne_branch = layers.MaxPool2D(pool_size=(2, 2))(ne_branch) sw_branch = layers.MaxPool2D(pool_size=(2, 2))(sw_branch) se_branch = layers.MaxPool2D(pool_size=(2, 2))(se_branch) fusion = layers.concatenate([x, nw_branch, ne_branch, sw_branch, se_branch], axis=-1) # x = layers.Conv2D(filters=32, kernel_size=(3, 3), activation='relu')(fusion) x=layers.Reshape((1,12, 12, 160))(fusion) x = layers.ConvLSTM2D(filters=32, kernel_size=(3, 3), padding="same", return_sequences=True)(x) x=layers.Reshape((12, 12, 32))(x) x=layers.Conv2D(filters=32, kernel_size=(3, 3), activation=None)(x) # Create and return the model x=layers.Flatten()(x) model = models.Model(inputs=input_tensor, outputs=x) return model from tensorflow.keras import layers, models # type: ignore def build_cnn_model(input_shape=(8, 8, 1)): # Define the input layer input_tensor = layers.Input(shape=input_shape) # Convolutional layer x = layers.Conv2D(64, (3, 3), padding='same')(input_tensor) x = layers.BatchNormalization()(x) x = layers.ReLU()(x) # Flatten layer x = layers.Flatten()(x) # Create the model model = models.Model(inputs=input_tensor, outputs=x) return model from tensorflow.keras import layers, models, Input # type: ignore def build_combined_model(): # Define input shapes input_shape_3d = (8, 95, 95, 2) input_shape_radial = (95, 95, 8) input_shape_cnn = (8, 8, 1) input_shape_latitude = (8,) input_shape_longitude = (8,) input_shape_other = (9,) # Build individual models model_3d = build_unet_convlstm(input_shape=input_shape_3d) model_radial = RSTNet(input_shape=input_shape_radial) model_cnn = build_cnn_model(input_shape=input_shape_cnn) # Define new inputs input_latitude = Input(shape=input_shape_latitude ,name="latitude_input") input_longitude = Input(shape=input_shape_longitude, name="longitude_input") input_other = Input(shape=input_shape_other, name="other_input") # Flatten the additional inputs flat_latitude = layers.Dense(32,activation='relu')(input_latitude) flat_longitude = layers.Dense(32,activation='relu')(input_longitude) flat_other = layers.Dense(64,activation='relu')(input_other) # Combine all outputs combined = layers.concatenate([ model_3d.output, model_radial.output, model_cnn.output, flat_latitude, flat_longitude, flat_other ]) # Add dense layers for final processing x = layers.Dense(128, activation='relu')(combined) x = layers.Dense(1, activation=None)(x) # Create the final model final_model = models.Model( inputs=[model_3d.input, model_radial.input, model_cnn.input, input_latitude, input_longitude, input_other ], outputs=x ) return final_model import h5py with h5py.File(r"final_model.h5", 'r') as f: print(f.attrs.get('keras_version')) print(f.attrs.get('backend')) print("Model layers:", list(f['model_weights'].keys())) model = build_combined_model() # Your original model building function model.load_weights(r"final_model.h5") def predict_unetlstm(reduced_images_test,hov_m_test,test_vmax_3d,lat_test,lon_test,int_diff_test): y=model.predict([reduced_images_test,hov_m_test,test_vmax_3d,lat_test,lon_test,int_diff_test ]) return y