import os import gradio as gr import torch import numpy as np from transformers import pipeline name_list = ['microsoft/biogpt', 'stanford-crfm/BioMedLM', 'facebook/galactica-1.3b'] examples = [['COVID-19 is'],['A 65-year-old female patient with a past medical history of']] print(f"Is CUDA available: {torch.cuda.is_available()}") print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}") pipe_biogpt = pipeline("text-generation", model="microsoft/BioGPT-Large", device="cuda:0", model_kwargs={"torch_dtype":torch.bfloat16}) pipe_biomedlm = pipeline("text-generation", model="stanford-crfm/BioMedLM", device="cuda:0", model_kwargs={"torch_dtype":torch.bfloat16}) pipe_galactica = pipeline("text-generation", model="facebook/galactica-1.3b", device="cuda:0", model_kwargs={"torch_dtype":torch.bfloat16}) title = "Compare generative biomedical LLMs!" description = "**Disclaimer:** this demo was made for research purposes only and should not be used for medical purposes." def inference(text): output_biogpt = pipe_biogpt(text, max_length=100)[0]["generated_text"] output_biomedlm = pipe_biomedlm(text, max_length=100)[0]["generated_text"] output_galactica = pipe_galactica(text, max_length=100)[0]["generated_text"] return [ output_biogpt, output_biomedlm, output_galactica ] io = gr.Interface( inference, gr.Textbox(lines=3), outputs=[ gr.Textbox(lines=3, label="BioGPT"), gr.Textbox(lines=3, label="BioMedLM (fka PubmedGPT)"), gr.Textbox(lines=3, label="Galactica 1.3B"), ], title=title, description=description, examples=examples ) io.launch()