import os import gradio as gr import torch from transformers import pipeline print(f"Is CUDA available: {torch.cuda.is_available()}") print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}") examples = [['COVID-19 is'],['A 65-year-old female patient with a past medical history of']] pipe_biogpt = pipeline("text-generation", model="microsoft/BioGPT-Large", device="cuda:0") title = "BioGPT-Large Demo" description = """ Check out the [BioGPT-Large model card](https://huggingface.co/microsoft/biogpt-large) for more info. **Disclaimer:** this demo was made for research purposes only and should not be used for medical purposes. """ def inference(text): output_biogpt = pipe_biogpt(text, max_length=100)[0]["generated_text"] return [ output_biogpt, ] io = gr.Interface( inference, gr.Textbox(lines=3), outputs=[ gr.Textbox(lines=3, label="BioGPT-Large"), ], title=title, description=description, examples=examples ) io.launch()