[net] batch=64 subdivisions=8 width=1536 height=1536 channels=3 momentum=0.949 decay=0.0005 angle=0 saturation = 1.5 exposure = 1.5 hue=.1 learning_rate=0.00261 burn_in=1000 max_batches = 500500 policy=steps steps=400000,450000 scales=.1,.1 mosaic=1 # ============ Backbone ============ # # Stem # 0 [convolutional] batch_normalize=1 filters=40 size=3 stride=1 pad=1 activation=mish # P1 # Downsample [convolutional] batch_normalize=1 filters=80 size=3 stride=2 pad=1 activation=mish # Split [convolutional] batch_normalize=1 filters=40 size=1 stride=1 pad=1 activation=mish [route] layers = -2 [convolutional] batch_normalize=1 filters=40 size=1 stride=1 pad=1 activation=mish # Residual Block [convolutional] batch_normalize=1 filters=40 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=40 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear # Transition first [convolutional] batch_normalize=1 filters=40 size=1 stride=1 pad=1 activation=mish # Merge [-1, -(3k+4)] [route] layers = -1,-7 # Transition last # 10 (previous+7+3k) [convolutional] batch_normalize=1 filters=80 size=1 stride=1 pad=1 activation=mish # P2 # Downsample [convolutional] batch_normalize=1 filters=160 size=3 stride=2 pad=1 activation=mish # Split [convolutional] batch_normalize=1 filters=80 size=1 stride=1 pad=1 activation=mish [route] layers = -2 [convolutional] batch_normalize=1 filters=80 size=1 stride=1 pad=1 activation=mish # Residual Block [convolutional] batch_normalize=1 filters=80 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=80 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=80 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=80 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=80 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=80 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear # Transition first [convolutional] batch_normalize=1 filters=80 size=1 stride=1 pad=1 activation=mish # Merge [-1, -(3k+4)] [route] layers = -1,-13 # Transition last # 26 (previous+7+3k) [convolutional] batch_normalize=1 filters=160 size=1 stride=1 pad=1 activation=mish # P3 # Downsample [convolutional] batch_normalize=1 filters=320 size=3 stride=2 pad=1 activation=mish # Split [convolutional] batch_normalize=1 filters=160 size=1 stride=1 pad=1 activation=mish [route] layers = -2 [convolutional] batch_normalize=1 filters=160 size=1 stride=1 pad=1 activation=mish # Residual Block [convolutional] batch_normalize=1 filters=160 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=160 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=160 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=160 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=160 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=160 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=160 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=160 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=160 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=160 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=160 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=160 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=160 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=160 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=160 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=160 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=160 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=160 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=160 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=160 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=160 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=160 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=160 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=160 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=160 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=160 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=160 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=160 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=160 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=160 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear # Transition first [convolutional] batch_normalize=1 filters=160 size=1 stride=1 pad=1 activation=mish # Merge [-1, -(3k+4)] [route] layers = -1,-49 # Transition last # 78 (previous+7+3k) [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish # P4 # Downsample [convolutional] batch_normalize=1 filters=640 size=3 stride=2 pad=1 activation=mish # Split [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish [route] layers = -2 [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish # Residual Block [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=320 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=320 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=320 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=320 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=320 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=320 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=320 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=320 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=320 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=320 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=320 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=320 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=320 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=320 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=320 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear # Transition first [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish # Merge [-1, -(3k+4)] [route] layers = -1,-49 # Transition last # 130 (previous+7+3k) [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish # P5 # Downsample [convolutional] batch_normalize=1 filters=1280 size=3 stride=2 pad=1 activation=mish # Split [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [route] layers = -2 [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish # Residual Block [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=640 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=640 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=640 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=640 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=640 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=640 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=640 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear # Transition first [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish # Merge [-1, -(3k+4)] [route] layers = -1,-25 # Transition last # 158 (previous+7+3k) [convolutional] batch_normalize=1 filters=1280 size=1 stride=1 pad=1 activation=mish # P6 # Downsample [convolutional] batch_normalize=1 filters=1280 size=3 stride=2 pad=1 activation=mish # Split [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [route] layers = -2 [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish # Residual Block [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=640 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=640 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=640 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=640 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=640 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=640 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=640 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear # Transition first [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish # Merge [-1, -(3k+4)] [route] layers = -1,-25 # Transition last # 186 (previous+7+3k) [convolutional] batch_normalize=1 filters=1280 size=1 stride=1 pad=1 activation=mish # P7 # Downsample [convolutional] batch_normalize=1 filters=1280 size=3 stride=2 pad=1 activation=mish # Split [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [route] layers = -2 [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish # Residual Block [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=640 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=640 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=640 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=640 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=640 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=640 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=640 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear # Transition first [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish # Merge [-1, -(3k+4)] [route] layers = -1,-25 # Transition last # 214 (previous+7+3k) [convolutional] batch_normalize=1 filters=1280 size=1 stride=1 pad=1 activation=mish # ============ End of Backbone ============ # # ============ Neck ============ # # CSPSPP [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [route] layers = -2 [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=640 activation=mish [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish ### SPP ### [maxpool] stride=1 size=5 [route] layers=-2 [maxpool] stride=1 size=9 [route] layers=-4 [maxpool] stride=1 size=13 [route] layers=-1,-3,-5,-6 ### End SPP ### [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=640 activation=mish [route] layers = -1, -13 # 229 (previous+6+5+2k) [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish # End of CSPSPP # FPN-6 [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [upsample] stride=2 [route] layers = 186 [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [route] layers = -1, -3 [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish # Split [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [route] layers = -2 # Plain Block [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=640 activation=mish [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=640 activation=mish [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=640 activation=mish # Merge [-1, -(2k+2)] [route] layers = -1, -8 # Transition last # 245 (previous+6+4+2k) [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish # FPN-5 [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [upsample] stride=2 [route] layers = 158 [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [route] layers = -1, -3 [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish # Split [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [route] layers = -2 # Plain Block [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=640 activation=mish [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=640 activation=mish [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=640 activation=mish # Merge [-1, -(2k+2)] [route] layers = -1, -8 # Transition last # 261 (previous+6+4+2k) [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish # FPN-4 [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish [upsample] stride=2 [route] layers = 130 [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish [route] layers = -1, -3 [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish # Split [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish [route] layers = -2 # Plain Block [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=320 activation=mish [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=320 activation=mish [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=320 activation=mish # Merge [-1, -(2k+2)] [route] layers = -1, -8 # Transition last # 277 (previous+6+4+2k) [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish # FPN-3 [convolutional] batch_normalize=1 filters=160 size=1 stride=1 pad=1 activation=mish [upsample] stride=2 [route] layers = 78 [convolutional] batch_normalize=1 filters=160 size=1 stride=1 pad=1 activation=mish [route] layers = -1, -3 [convolutional] batch_normalize=1 filters=160 size=1 stride=1 pad=1 activation=mish # Split [convolutional] batch_normalize=1 filters=160 size=1 stride=1 pad=1 activation=mish [route] layers = -2 # Plain Block [convolutional] batch_normalize=1 filters=160 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=160 activation=mish [convolutional] batch_normalize=1 filters=160 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=160 activation=mish [convolutional] batch_normalize=1 filters=160 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=160 activation=mish # Merge [-1, -(2k+2)] [route] layers = -1, -8 # Transition last # 293 (previous+6+4+2k) [convolutional] batch_normalize=1 filters=160 size=1 stride=1 pad=1 activation=mish # PAN-4 [convolutional] batch_normalize=1 size=3 stride=2 pad=1 filters=320 activation=mish [route] layers = -1, 277 [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish # Split [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish [route] layers = -2 # Plain Block [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=320 activation=mish [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=320 activation=mish [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=320 activation=mish [route] layers = -1,-8 # Transition last # 306 (previous+3+4+2k) [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish # PAN-5 [convolutional] batch_normalize=1 size=3 stride=2 pad=1 filters=640 activation=mish [route] layers = -1, 261 [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish # Split [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [route] layers = -2 # Plain Block [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=640 activation=mish [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=640 activation=mish [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=640 activation=mish [route] layers = -1,-8 # Transition last # 319 (previous+3+4+2k) [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish # PAN-6 [convolutional] batch_normalize=1 size=3 stride=2 pad=1 filters=640 activation=mish [route] layers = -1, 245 [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish # Split [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [route] layers = -2 # Plain Block [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=640 activation=mish [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=640 activation=mish [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=640 activation=mish [route] layers = -1,-8 # Transition last # 332 (previous+3+4+2k) [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish # PAN-7 [convolutional] batch_normalize=1 size=3 stride=2 pad=1 filters=640 activation=mish [route] layers = -1, 229 [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish # Split [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [route] layers = -2 # Plain Block [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=640 activation=mish [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=640 activation=mish [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=640 activation=mish [route] layers = -1,-8 # Transition last # 345 (previous+3+4+2k) [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish # ============ End of Neck ============ # # ============ Head ============ # # YOLO-3 [route] layers = 293 [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=320 activation=mish [convolutional] size=1 stride=1 pad=1 filters=340 activation=linear [yolo] mask = 0,1,2,3 anchors = 13,17, 22,25, 27,66, 55,41, 57,88, 112,69, 69,177, 136,138, 136,138, 287,114, 134,275, 268,248, 268,248, 232,504, 445,416, 640,640, 812,393, 477,808, 1070,908, 1408,1408 classes=80 num=20 jitter=.3 ignore_thresh = .7 truth_thresh = 1 random=1 scale_x_y = 1.05 iou_thresh=0.213 cls_normalizer=1.0 iou_normalizer=0.07 iou_loss=ciou nms_kind=greedynms beta_nms=0.6 # YOLO-4 [route] layers = 306 [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=640 activation=mish [convolutional] size=1 stride=1 pad=1 filters=340 activation=linear [yolo] mask = 4,5,6,7 anchors = 13,17, 22,25, 27,66, 55,41, 57,88, 112,69, 69,177, 136,138, 136,138, 287,114, 134,275, 268,248, 268,248, 232,504, 445,416, 640,640, 812,393, 477,808, 1070,908, 1408,1408 classes=80 num=20 jitter=.3 ignore_thresh = .7 truth_thresh = 1 random=1 scale_x_y = 1.05 iou_thresh=0.213 cls_normalizer=1.0 iou_normalizer=0.07 iou_loss=ciou nms_kind=greedynms beta_nms=0.6 # YOLO-5 [route] layers = 319 [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=1280 activation=mish [convolutional] size=1 stride=1 pad=1 filters=340 activation=linear [yolo] mask = 8,9,10,11 anchors = 13,17, 22,25, 27,66, 55,41, 57,88, 112,69, 69,177, 136,138, 136,138, 287,114, 134,275, 268,248, 268,248, 232,504, 445,416, 640,640, 812,393, 477,808, 1070,908, 1408,1408 classes=80 num=20 jitter=.3 ignore_thresh = .7 truth_thresh = 1 random=1 scale_x_y = 1.05 iou_thresh=0.213 cls_normalizer=1.0 iou_normalizer=0.07 iou_loss=ciou nms_kind=greedynms beta_nms=0.6 # YOLO-6 [route] layers = 332 [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=1280 activation=mish [convolutional] size=1 stride=1 pad=1 filters=340 activation=linear [yolo] mask = 12,13,14,15 anchors = 13,17, 22,25, 27,66, 55,41, 57,88, 112,69, 69,177, 136,138, 136,138, 287,114, 134,275, 268,248, 268,248, 232,504, 445,416, 640,640, 812,393, 477,808, 1070,908, 1408,1408 classes=80 num=20 jitter=.3 ignore_thresh = .7 truth_thresh = 1 random=1 scale_x_y = 1.05 iou_thresh=0.213 cls_normalizer=1.0 iou_normalizer=0.07 iou_loss=ciou nms_kind=greedynms beta_nms=0.6 # YOLO-7 [route] layers = 345 [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=1280 activation=mish [convolutional] size=1 stride=1 pad=1 filters=340 activation=linear [yolo] mask = 16,17,18,19 anchors = 13,17, 22,25, 27,66, 55,41, 57,88, 112,69, 69,177, 136,138, 136,138, 287,114, 134,275, 268,248, 268,248, 232,504, 445,416, 640,640, 812,393, 477,808, 1070,908, 1408,1408 classes=80 num=20 jitter=.3 ignore_thresh = .7 truth_thresh = 1 random=1 scale_x_y = 1.05 iou_thresh=0.213 cls_normalizer=1.0 iou_normalizer=0.07 iou_loss=ciou nms_kind=greedynms beta_nms=0.6 # ============ End of Head ============ #