## Model Zoo
| Model | Test Size | APval | AP50val | AP75val | APSval | APMval | APLval | batch1 throughput |
| :-- | :-: | :-: | :-: | :-: | :-: | :-: | :-: | :-: |
| **YOLOv4-CSP** | 640 | **49.1%** | **67.7%** | **53.8%** | **32.1%** | **54.4%** | **63.2%** | 76 *fps* |
| **YOLOR-CSP** | 640 | **49.2%** | **67.6%** | **53.7%** | **32.9%** | **54.4%** | **63.0%** | - |
| | | | | | | |
| **YOLOv4-CSP-X** | 640 | **50.9%** | **69.3%** | **55.4%** | **35.3%** | **55.8%** | **64.8%** | 53 *fps* |
| **YOLOR-CSP-X** | 640 | **51.1%** | **69.6%** | **55.7%** | **35.7%** | **56.0%** | **65.2%** | - |
| | | | | | | |
## Installation
https://github.com/AlexeyAB/darknet
Docker environment (recommended)
Expand
```
# get code
git clone https://github.com/AlexeyAB/darknet
# create the docker container, you can change the share memory size if you have more.
nvidia-docker run --name yolor -it -v your_coco_path/:/coco/ -v your_code_path/:/yolor --shm-size=64g nvcr.io/nvidia/pytorch:21.02-py3
# apt install required packages
apt update
apt install -y libopencv-dev
# edit Makefile
#GPU=1
#CUDNN=1
#CUDNN_HALF=1
#OPENCV=1
#AVX=1
#OPENMP=1
#LIBSO=1
#ZED_CAMERA=0
#ZED_CAMERA_v2_8=0
#
#USE_CPP=0
#DEBUG=0
#
#ARCH= -gencode arch=compute_52,code=[sm_70,compute_70] \
# -gencode arch=compute_61,code=[sm_75,compute_75] \
# -gencode arch=compute_61,code=[sm_80,compute_80] \
# -gencode arch=compute_61,code=[sm_86,compute_86]
#
#...
# build
make -j8
```
## Testing
To reproduce inference speed, using:
```
CUDA_VISIBLE_DEVICES=0 ./darknet detector demo cfg/coco.data cfg/yolov4-csp.cfg weights/yolov4-csp.weights source/test.mp4 -dont_show -benchmark
```